
Exploiting
Unprotected IO
Operations in AMD’s
Secure Encrypted
Virtualization

AMD’s Secure Encrypted
Virtualization (SEV)

2

lack of trust in the privileged
software

2

unprotected I/O operations in
the SEV-enabled VMs

2

breach the confidentiality and
integrity of these I/O operations

2

difficult to mitigate

2

demonstrate the construction of
two attack primi- tives against
SEV’s memory encryption
schemes

2

memory decryption oracle

2

memory encryption oracle

2

enables an adversary to decrypt
and encrypt arbitrary messages
using the memory encryption
keys of the VMs

2

potential solutions

2

also reveals a severe side-
channel vulnerability of SEV:

3 alter the present bit or reserve
bit of the nested page table
entries to force guest VM’s
memory accesses to the corre-
sponding pages to trigger page
faults

3

direct memory access (DMA)
from the virtualized I/O devices
must operate on unencrypted
memory or memory shared with
the hypervisor

2

VMs to per- form I/O operations

4

programmed I/O

4

memory-mapped I/O,

4

direct memory access (DMA)

4

IOMMU

5

bounce buffer, called Software I/
O Translation Buffer (SWIOTLB),
is allocated on these memory
pages

5

4

encrypt I/O streams by software

6

practical limitations in practice

Network traffic can only be
partially encrypted

6

Encrypting I/O traffic cannot be
applied when the I/O devices
cannot decrypt the I/O stream by
themselves

6

marginnote3app://note/E89FD3A9-B28C-4838-8F0B-0F680B69532E
marginnote3app://note/6734DB5F-6C24-4BD6-A1D8-E318BF5C3197
marginnote3app://note/30D9597E-67E0-4674-9D8E-33D6F6EE0767
marginnote3app://note/A72363A6-6043-45AA-B9A1-02B912046B6B
marginnote3app://note/04A7BF0A-255E-4DEB-AF4F-6211F6E0B7A9
marginnote3app://note/3A8A0B81-12AC-48D6-92E3-F3B7E0BD502E
marginnote3app://note/E3372C9D-DB8F-4840-B21E-01F58BDF4105
marginnote3app://note/27CADEE2-68FD-486B-ACAB-CE21EABEC3AE
marginnote3app://note/C66B7335-5F92-4BEE-A6B5-B17B133D1BFE
marginnote3app://note/55C3A773-ABFE-49BD-BF87-2733DA724FE1
marginnote3app://note/1CDCA650-D4E9-4477-9375-2E8A998EF8DD
marginnote3app://note/BE2A1136-73B3-44DC-BAD3-5F2DE76299DE
marginnote3app://note/191AF33C-D7E3-48F7-8681-C0803040F232
marginnote3app://note/B49D7A1F-C547-4523-8A63-A33BB57CDE17
marginnote3app://note/7AAF6771-5908-4246-ACCD-D33F4963F04E
marginnote3app://note/74B402AA-5562-4876-9986-9ED7DC793B1F
marginnote3app://note/C2FB5497-3FD7-4010-8C3C-B34546533AC8
marginnote3app://note/9DE4D7C6-E9C2-4695-BDA6-3DC8D31CD11E
marginnote3app://note/DDD6286E-EFFD-4455-8FCC-774DB1915779
marginnote3app://note/6E6A01BE-AE4F-4ED1-92EB-DA71926F8217
marginnote3app://note/5B36FB14-82C8-4D3C-984E-9132A4A2CBDF
marginnote3app://note/6177ED86-39D6-490C-AF04-CC917AE483CD
marginnote3app://note/44D5F030-72B4-4865-88E9-2BCAA1629D39
marginnote3app://note/AB288DDF-7CC2-443F-B579-920247C7EB5E

44

bounce buffer, called Software I/O Translation Buffer (SWIOTLB), is allocated on these memory pages 55

IOMMU 55

direct memory access (DMA) 44

memory-mapped I/O, 44

programmed I/O 44

VMs to per- form I/O operations 44

direct memory access (DMA) from the virtualized I/O devices must operate on unencrypted memory or memory shared
with the hypervisor

22

alter the present bit or reserve bit of the nested page table entries to force guest VM’s memory accesses to the
corre- sponding pages to trigger page faults

33

also reveals a severe side-channel vulnerability of SEV: 33

potential solutions 22

enables an adversary to decrypt and encrypt arbitrary messages using the memory encryption keys of the VMs 22

memory encryption oracle 22

memory decryption oracle 22

demonstrate the construction of two attack primi- tives against SEV’s memory encryption schemes 22

difficult to mitigate 22

breach the confidentiality and integrity of these I/O operations 22

unprotected I/O operations in the SEV-enabled VMs 22

lack of trust in the privileged software 22

AMD’s Secure Encrypted Virtualization (SEV) 22

Exploiting Unprotected IO Operations in AMD’s Secure Encrypted Virtualization

marginnote3app://note/E89FD3A9-B28C-4838-8F0B-0F680B69532E
marginnote3app://note/6734DB5F-6C24-4BD6-A1D8-E318BF5C3197
marginnote3app://note/3A8A0B81-12AC-48D6-92E3-F3B7E0BD502E
marginnote3app://note/E3372C9D-DB8F-4840-B21E-01F58BDF4105
marginnote3app://note/27CADEE2-68FD-486B-ACAB-CE21EABEC3AE
marginnote3app://note/C2FB5497-3FD7-4010-8C3C-B34546533AC8
marginnote3app://note/C66B7335-5F92-4BEE-A6B5-B17B133D1BFE
marginnote3app://note/9DE4D7C6-E9C2-4695-BDA6-3DC8D31CD11E
marginnote3app://note/DDD6286E-EFFD-4455-8FCC-774DB1915779
marginnote3app://note/6E6A01BE-AE4F-4ED1-92EB-DA71926F8217
marginnote3app://note/55C3A773-ABFE-49BD-BF87-2733DA724FE1
marginnote3app://note/1CDCA650-D4E9-4477-9375-2E8A998EF8DD
marginnote3app://note/5B36FB14-82C8-4D3C-984E-9132A4A2CBDF
marginnote3app://note/30D9597E-67E0-4674-9D8E-33D6F6EE0767
marginnote3app://note/A72363A6-6043-45AA-B9A1-02B912046B6B
marginnote3app://note/BE2A1136-73B3-44DC-BAD3-5F2DE76299DE
marginnote3app://note/191AF33C-D7E3-48F7-8681-C0803040F232
marginnote3app://note/B49D7A1F-C547-4523-8A63-A33BB57CDE17
marginnote3app://note/6177ED86-39D6-490C-AF04-CC917AE483CD
marginnote3app://note/44D5F030-72B4-4865-88E9-2BCAA1629D39
marginnote3app://note/AB288DDF-7CC2-443F-B579-920247C7EB5E

Encrypting I/O traffic cannot be applied when the I/O devices cannot decrypt the I/O stream by themselves 66

Network traffic can only be partially encrypted 66

practical limitations in practice

encrypt I/O streams by software 66

marginnote3app://note/04A7BF0A-255E-4DEB-AF4F-6211F6E0B7A9
marginnote3app://note/7AAF6771-5908-4246-ACCD-D33F4963F04E
marginnote3app://note/74B402AA-5562-4876-9986-9ED7DC793B1F

This paper is included in the Proceedings of the
28th USENIX Security Symposium.

August 14–16, 2019 • Santa Clara, CA, USA

978-1-939133-06-9

Open access to the Proceedings of the
28th USENIX Security Symposium

is sponsored by USENIX.

Exploiting Unprotected I/O Operations in
AMD’s Secure Encrypted Virtualization

Mengyuan Li, Yinqian Zhang, and Zhiqiang Lin, The Ohio State University; Yan Solihin,
University of Central Florida

https://www.usenix.org/conference/usenixsecurity19/presentation/li-mengyuan

Exploiting Unprotected I/O Operations in AMD’s Secure Encrypted Virtualization

Mengyuan Li
The Ohio State University

Yinqian Zhang
The Ohio State University

Zhiqiang Lin
The Ohio State University

Yan Solihin
University of Central Florida

Abstract
AMD’s Secure Encrypted Virtualization (SEV) is an emerg-
ing technology to secure virtual machines (VM) even in the
presence of malicious hypervisors. However, the lack of trust
in the privileged software also introduces an assortment of
new attack vectors to SEV-enabled VMs that were mostly
unexplored in the literature. This paper studies the insecurity
of SEV from the perspective of the unprotected I/O operations
in the SEV-enabled VMs. The results are alerting: not only
have we discovered attacks that breach the confidentiality
and integrity of these I/O operations—which we find very
difficult to mitigate by existing approaches—but more signifi-
cantly we demonstrate the construction of two attack primi-
tives against SEV’s memory encryption schemes, namely a
memory decryption oracle and a memory encryption oracle,
which enables an adversary to decrypt and encrypt arbitrary
messages using the memory encryption keys of the VMs. We
evaluate the proposed attacks and discuss potential solutions
to the underlying problems.

1 Introduction

Secure Encrypted Virtualization (SEV) is an emerging proces-
sor feature available in recent AMD processors that encrypts
the entire memory of virtual machines (VM) transparently.
Memory encryption is performed by a hardware memory en-
cryption engine (MEE) embedded in the memory controller
that encrypts memory traffic on the fly, with a key unique to
each of the VMs. As the encryption keys are generated from
random sources at the time of VM launches and are securely
protected inside the secure processor in their lifetime, privi-
leged software, including the hypervisor, is not able to extract
the keys and use them to decrypt the VMs’ memory content.
Therefore, SEV enables a stronger threat model, where the hy-
pervisor is removed from the trusted computing base (TCB).
It is explicitly stated in AMD’s SEV whitepaper [20] that
“SEV technology is built around a threat model where an at-
tacker is assumed to have access to not only execute user level

privileged code on the target machine, but can potentially exe-
cute malware at the higher privileged hypervisor level as well.”
Hence, SEV provides a trusted execution environment (TEE)
for (mostly) unmodified VMs to perform confidential compu-
tation that is shielded from strong adversaries that control the
entire privileged software stack.

The lack of trust in the hypervisor, unfortunately, increases
considerably the attack surface that a VM has to guard against.
As the hypervisor controls the VMs’ access to hardware re-
sources including CPU, physical memory, I/O devices, the
VM’s CPU scheduling, memory management, and I/O oper-
ations must be mediated by untrusted software. As a result,
new attack vectors have emerged as researchers explore the
security properties of this new hardware feature. For instance,
Hetzelt and Buhren [17] demonstrated attacks against SEV-
enabled VMs by exploiting unencrypted virtual machine con-
trol block (VMCB) at the time of VMExit. They show that a
malicious hypervisor may learn the machine state of the guest
VM by reading register values stored in the VMCB and alter
these register values before returning to the VM. The lack
of integrity of the encrypted memory has been identified by
several prior studies [9, 12, 17, 25], which enables a malicious
hypervisor to perform a variety of attacks.

This paper studies a previously unexplored problem under
SEV’s trust model—the unprotected I/O operations of SEV-
enabled VMs. While the entire memory of the VMs can be
encrypted using keys that are not known to the hypervisor,
direct memory access (DMA) from the virtualized I/O devices
must operate on unencrypted memory or memory shared with
the hypervisor. As a result, neither the confidentiality nor the
integrity of the I/O operations can be guaranteed under SEV’s
trust models.

More importantly, this paper goes beyond the investigation
of I/O insecurity itself. In particular, we further demonstrate
that these unprotected I/O operations can be leveraged by the
adversary to construct (1) an encryption oracle to encrypt ar-
bitrary memory blocks using the guest VM’s memory encryp-
tion key, and (2) a decryption oracle to decrypt any memory
pages of the guest. We demonstrate in the paper that these

USENIX Association 28th USENIX Security Symposium 1257

two powerful attack primitives can be constructed in a very
stealthy manner—the oracles can be queried by the adversary
repeatedly and frequently without crashing the attacked VMs.

In addition, as a by-product of the study, this paper also
reveals a severe side-channel vulnerability of SEV: As the
adversary is able to manipulate the nested page tables, it could
alter the present bit or reserve bit of the nested page table
entries to force guest VM’s memory accesses to the corre-
sponding pages to trigger page faults. While this page-fault
side channel has been previously studied in the context of Intel
SGX [36] and even used in previous attacks against SEV [17],
it is also reported that page faults from SEV-enabled guest
VMs leak the entire faulting addresses (and error code) to the
hypervisor (unlike in SGX where the page offset is masked).
This fine-grained page-fault attack enables fine-grained trac-
ing of the encrypted VM’s memory access patterns, and par-
ticularly in this paper is used to facilitate the construction of
the memory decryption oracle.

Contribution. This paper contributes to the study of TEE
security in the following aspects:

• The paper studies a previously unexplored security issue
of AMD SEV—the unprotected I/O operations of SEV-
enabled guest VMs. The root cause of the problem is the
incompatibility between AMD-V’s I/O virtualization with
SEV’s memory encryption scheme.

• The paper demonstrates that the unprotected I/O opera-
tions could also be exploited to construct powerful attack
primitives, enabling the adversary to perform arbitrary
memory encryption and decryption.

• The paper reports the lack of page-offset masking of the
faulting addresses during SEV’s page faults handling,
which leads to fine-grained side-channel leakage. The pa-
per also demonstrates the use of both fine-grained and
coarse-grained side channels in its I/O attacks.

• The paper empirically evaluates the fidelity of the attacks
and discusses both hardware and software approaches to
mitigating the I/O security issues.

Responsible disclosure. We have reported our findings to
AMD and disclosed the technical details with AMD re-
searchers. While we were confirmed that the presented attacks
work on current release of SEV processors, AMD researchers
suggested future generations of SEV chipsets are likely to be
immune from these attacks. Some of the technical feedback
we obtained from AMD has been integrated into the paper.

Roadmap. Section 2 presents the overview of AMD’s SEV
and explains the root causes of the exploited I/O operations in
this paper. Section 3 describes several attacks exploiting the
unprotected I/Os. Section 4 presents an evaluation of the fi-
delity of the attacks. Section 5 discusses potential solutions to
securing SEV’s I/O operations. Section 6 summarizes related
work and Section 7 concludes the paper.

2 Overview of AMD SEV

2.1 Overview
AMD Secure Encrypted Virtualization (SEV) is a security
extension for AMD Virtualization (AMD-V) architecture [2].
AMD-V is designed as a virtualization substrate for cloud
computing services, which allows one physical server to run
multiple isolated guest virtual machines (VM) concurrently.
AMD’s SEV is designed atop its Secure Memory Encryption
(SME) technology.

Secure Memory Encryption. SME [20] is AMD’s technol-
ogy for real-time memory encryption, which aims at providing
strong protection against memory snooping and cold boot at-
tacks. An Advanced Encryption Standard (AES) engine is
embedded in the on-die memory controller that encrypts/de-
crypts memory traffic when it is transferred out of or into the
processor. A single ephemeral encryption key is generated for
the entire machine from a random source every time system
resets. The key is managed by a 32-bit ARM Cortex-A5 Se-
cure Processor (AMD-SP). When SME is enabled, physical
address bit 47 (also called the C-bit) in the page table entry
(PTE) is used to mark whether the memory page is encrypted,
thus enabling page-granularity encryption. Transparent SME,
or TSME, is a mode of operating of SME, which allows en-
cryption of the entire memory regardless of the C-bit. Thus
TSME allows unmodified operating system to use the memory
encryption technology.

Secure Encrypted Virtualization. AMD’s SEV combines
the AMD-V architecture and the SME technology to support
encrypted virtual machines [20]. SEV aims to protect the
security of guest VMs even in the presence of a malicious
hypervisor, by using two isolation techniques: First, the data
of guest VMs inside the processor is protected by an access
control mechanism using Address Space Identifier (ASID).
Specifically, the data in the CPU cache is tagged with ASID
of each VM; thus it is prevented from being accessed by
other VMs or the hypervisor. Second, the guest VM’s data
outside the processor (e.g., in the DRAM) is protected via
memory encryption. Rather than using a single AES key
for the whole machine as in the case of SME, SEV allows
each VM to use a distinct ephemeral key, thus preventing the
hypervisor from reading the encrypted memory of each VM.
Because memory encryption keys are managed by the secure
co-processor, privileged software layers are not allowed to
access or manipulate these keys.

Beside confidentiality, authenticity of the platform and in-
tegrity of the guest VMs are also provided by SEV. An identi-
fication key embedded in the firmware is signed by both AMD
and the owner of the machine to demonstrate that the platform
is an authentic AMD platform with SEV capabilities, which
is administered by the machine owner. The initial contents
of memory, along with a set of metadata of the VM, can be
signed by the firmware so that the users of the guest VMs

1258 28th USENIX Security Symposium USENIX Association

Table 1: Effects of C-bits in guest page tables (gPT) and nested
page tables (nPT). M is the plaintext; Ek() is the encryption function
under a memory encryption key k; kg and kh represent the guest VM
and the hypervisor’s memory encryption keys, respectively.

gPT nPT
C-bit=0 C-bit=1

C-bit=0 M Ekh(M)
C-bit=1 Ekg(M) Ekg(M)

may verify the identity and the initial states of the launched
VMs through remote attestation.

2.2 Memory Encryption

ASID and memory encryption. The encryption keys used
for memory encryption are generated from random sources
when the VMs are launched. They are securely stored inside
the secure processor for their entire life-cycle. Each VM has
its own unique memory encryption key Kvek, which is indexed
by the ASID of the VM. When the VM accesses a memory
page that is mapped to its address space with its C-bit set, the
memory will be first decrypted using the VM’s Kvek before
loaded into the CPU caches. Data in the caches are stored
in plaintext; each cache line, in addition to the regular cache
tags, is also tagged by the ASID of the VM. As such, the
same physical memory may have multiple copies cached in
the hardware caches. AMD does not maintain the consistency
of the cache copies with different ASID tags [20].

Encryption with nested paging. AMD-V utilizes nested
paging structures [1] to facilitate memory isolation between
guest VMs. When the virtual address used by the guest VM
(gVA) is to be translated into physical address, it is first trans-
lated into a guest physical addressing (gPA) using the guest
page table (gPT), and the gPA is then translated into the host
physical address (hPA) using the nested page table (nPT).
While gPT is located in guest VM’s address space, nPT is
controlled directly by the host.

With AMD’s SME technology, bit 47 of a PTE is called
the C-bit, which is used to indicate whether or not the cor-
responding page is encrypted. When the C-bit of a page is
set (i.e., 1), the page is encrypted. As both the gPT and the
nPT has C-bits, the encryption state of a page is controlled
by the combination of the two C-bits in its PTEs in the gPT
and nPT. The effect of C-bits in the gPT and nPT is shown
in Table 1. To summarize, whenever the C-bit of gPT is set
to 1, the memory page is encrypted with the guest VM’s en-
cryption key kg; when the C-bit of gPT is cleared, the C-bit
of nPT determines the encryption state of the page: the page
is encrypted under the hypervisor’s key kg when C-bit is 1;
otherwise the page is not encrypted.

To share memory pages between a guest VM and the hy-
pervisor while preventing physical attacks, it is required to

Figure 1: An example of a disk I/O operation by an SEV-
enabled VM.

have the memory page’s C-bit set to 0 in its gPT and the C-bit
set to 1 in its nPT, so that the page is encrypted under the
hypervisor’s encryption key.

Encryption modes of operation. SEV uses AES as its en-
cryption algorithm. The memory encryption engine encrypts
data with a 128-bit key using the Electronic Codebook (ECB)
mode of operation [12]. Therefore, each 16-byte aligned mem-
ory block is encrypted independently. A physical address-
based tweak function T () is utilized to make the cipher-
text dependent of not only the plaintext but also its physical
address [20]. Specifically, the tweak function is defined as
T (x) =�xi=1ti, where xi is the ith bit of host physical address
x,� is the bitwise exclusive-or (i.e., XOR) and ti (1 i 128)
is a 128-bit constant vector. The tweak function takes a phys-
ical address as an input and outputs a 128-bit value T (x).
Therefore, the ciphertext c of a plaintext m at address Pm is
c = EK(m� T (Pm)). The tweak function prevents attacker
from inferring plaintext by comparing the ciphertext of two
16-byte memory blocks. However, as the constant vectors tis
remain the same for all VMs (and the hypervisor) on the ma-
chine, they can be easily reverse engineered by an adversary.

Known issues with SME memory encryption. One root
problem exploited in prior studies on SEV’s insecurity is the
lack of integrity of its encrypted memory [9, 12, 17, 25].

2.3 Virtualized I/O Operations
Similar to other virtualization technologies, SEV-enabled
VMs interact with I/O devices through virtual hardware using
Quick Emulator (QEMU). Common methods for VMs to per-
form I/O operations are programmed I/O, memory-mapped
I/O, and direct memory access (DMA). Among these meth-
ods, DMA is most frequently used method for SEV-enabled
VMs to do I/O accesses.

USENIX Association 28th USENIX Security Symposium 1259

Direct Memory Access in SEV. With the assistance of DMA
chips, programmable peripheral devices can transfer data to
and from the main memory without involving the proces-
sor. With virtualization, a common way to support DMA
is through IOMMU, which is a hardware memory manage-
ment unit that maps the DMA-capable I/O buses to the main
memory. However, unique to SEV is that the memory is
encrypted. While the MMU supports memory encryption
with multiple ASIDs, IOMMU only supports one ASID (i.e.,
ASID=0). Therefore, in SEV-enabled VMs, DMA operations
are performed on memory pages that are shared between the
guest and the hypervisor (encrypted with the hypervisor’s
Kh). A bounce buffer, called Software I/O Translation Buffer
(SWIOTLB), is allocated on these memory pages.

To illustrate the DMA operation from the guest, a disk I/O
read is shown in Figure 1. When a guest application needs to
read data from file, it first checks whether the file is already
stored in its page cache. A miss in the guest page cache
will trigger read from virtual disks, which is emulated by
QEMU-KVM. The data is actually read from the physical
disk by QEMU-KVM’s DMA operation into SWIOTLB and
then copied to the disk device driver’s I/O buffer by the guest
VM itself. The disk write operation is the inverse of this
process, in which the data is first copied from the guest into
SWIOTLB and then processed by QEMU.

3 Security Issues

In this section, we explore the security issues of the lack
of protection for SEV’s I/O operations. We start of our
exploration with the most straightforward consequence of
vulnerability—the insecurity of I/O operations itself—and
present an attack example that breaches the integrity of I/O
operations. To comprehensively study the attack surface, we
also enumerate the I/O operations from a guest VM that are
vulnerable to such attacks and discuss the challenges of im-
plementing effective countermeasures. Next, we show that
I/O insecurity leads to a complete compromise of the memory
encryption scheme of SEV, by constructing powerful attack
primitives that leverage the unprotected I/O operations to en-
able the adversary to encrypt or decrypt arbitrary messages
with the guest VM’s memory encryption key, kvek.

3.1 Threat Model
We consider a scenario in which the VMs’ memory are en-
crypted and protected by AMD SEV technology. The hyper-
visor run on a machine controlled by a third-party service
provider. Under the threat model we consider, the third-party
service is not trusted to respect the integrity or confidentiality
of the computation inside the VMs. This could happen when
the service provider is dishonest or when the hypervisor has
been compromised.

The goal of the attacks is either to compromise the I/O
operations themselves or the memory encryption of SEV. Out
of scope in this paper are denial-of-service (DoS) attacks, in
which the service provider simply refuses to run the VM. SEV
is not designed to prevent DoS attacks.

3.2 I/O Security
In this section, we explore the direct consequences of unpro-
tected I/O operations from SEV-enabled guests.

3.2.1 Case Study: Integrity Breaches of Disk I/O

We first present a case study to show how SEV’s guest VMs’
unprotected I/O operations can be exploited to breach I/O
security in practice. In this case study, we show that a ma-
licious hypervisor is able to gain control of the guest VMs
through an OpenSSH server without passwords by exploiting
unprotected disk I/O. Therefore, we assume the disk is not
encrypted with disk encryption key in this example. However,
we note it is recommended by AMD to only use encrypted
storage. As such, this case study only serves the purpose
of proof-of-concept, rather than a practical attack. We will
discuss its security implications in Section 3.2.2.

Specifically, the adversary controls the entire host and
launches the SEV-enabled VM using the standard proce-
dure [3]. During the system bootup, the binary code of
sshd that performs user authentication is loaded into the
memory. To monitor the disk I/O streams, whenever the
QEMU performs a DMA operation for the guest, the adver-
sary checks the memory buffer used for this DMA operation
(i.e., SWIOTLB) and search for the binary code of sshd. In
our implementation, we used a 32-byte memory content (i.e.,
0xff85 0xc041 0x89c4 0x8905 0x4e05 0x2900 0x0f85 0x1b01
0x0000 0x488b 0x3d49 0x0529 0x0089 0xeee8 0xc2bf 0xfdff)
as the signature of the sshd binary and no false detection
was observed. Once the DMA operation for sshd is identi-
fied, the adversary modifies the binary code inside SWIOTLB,
before the QEMU commits the DMA operation. In partic-
ular, this is done by replacing the crucial code used in au-
thentication that corresponds to callq pam_authenticate,
which is a five-byte binary string 0xe8 0xc2 0xbf 0xfd 0xff, to
mov $0 %eax (a binary string of 0xb8 0x00 0x00 0x00 0x00).
pam_authenticate() is used to perform user authentica-
tion; only when it returns 0 will the authentication succeed.
Therefore, by moving 0 to the register %eax (the register used
to store return value of a function call) directly, the adver-
sary can successfully bypass the user authentication without
knowing the password. To validate the attack, we empirically
conducted the attack three times and all were successful.

Performance degradation due to I/O monitoring. We also
conducted experiments to measure the performance degrada-
tion due to the hypervisor’s monitoring of disk I/O streams.
We used the dd command to write 1GB of data to the local

1260 28th USENIX Security Symposium USENIX Association

(a) I/O write (b) I/O read

Figure 2: Read/write performance overhead due to I/O moni-
toring.

disk to measure the I/O write speed. The dsync flag of set to
make sure the data is written to the disk directly, bypassing the
page caches. To measure the read speed, we cleaned the page
caches in the memory by setting vm.drop_caches=3 before
reading 1GB of data from local disk. In both the read and write
experiments, we measured the performance with and without
I/O stream monitoring and repeated the measurements 200
times. The results show the performance degradation of I/O
read and write is 11.8% and 7.9% respectively (see Figure 2).

3.2.2 Estimating The Attack Surface

As shown in the above example, I/O operations that are not
encrypted by the software can be intercepted by the malicious
hypervisor and manipulated to compromise the SEV-enabled
guests. This vulnerability exists in all emulated I/O devices
that are commonly used in cloud VMs, such as disk I/O, net-
work I/O, and display I/O, etc. While a straightforward so-
lution is to encrypt I/O streams by software, however, this
simple method has many practical limitations in practice:

Network I/O. Network traffic can only be partially encrypted,
as headers of IP or TCP cannot be encrypted. The adversary
is still able to modify the network traffic to forge the IP ad-
dresses, port numbers, and encrypted metadata of the network
packets. This is true for both TLS traffic and VPN traffic. As
we will show in Section 3.3, encrypted traffic like SSH can
still be exploited to construct memory decryption oracles.

Display I/O. Encrypting I/O traffic cannot be applied when
the I/O devices cannot decrypt the I/O stream by themselves.
Display I/O is one such example. For instance, Virtual Net-
work Computing (VNC) is a graphical desktop sharing pro-
tocol that allows VMs to be remotely controlled. In KVM,
the QEMU redirects the VGA display from the guest to the
VNC protocol, which is not encrypted. Therefore, if the user
of the guest VM uses VNC to control the VM, keystroke and
mouse clicking will be learned and manipulated by the adver-
sary. To protect display I/O operations, the guest VM must be
modified to encrypt all display I/O traffic and the remote user
interface must be modified accordingly to decrypt the traffic.

Disk I/O. For disk I/O operations, the method recommended
by SEV [4] is for each SEV-enabled VMs to use encrypted

disk filesystems. To use encrypted disks, however, the owner
needs to first provision the disk encryption key into the pro-
tected VMs by using the Launch_Secret [3] command. This
command first decrypts a packet sent by the VM owner (that
contains the disk encryption key) encrypted using Ktek (Trans-
port Encryption Key), atomically re-encrypts it using the
memory encryption Kvek, and then injects it into the guest
physical address specified by GUEST_PADDR (a parameter of
the Launch_Secret command). As the address of the disk
encryption key is known, if memory confidentiality is com-
promised (using methods to be described in Section 3.3), the
disk encryption key can be learned and used to decrypt the
entire image. Therefore, disk I/O is not secure, either.

3.3 Decryption Oracles

In this section, we show that the DMA operations under SEV’s
memory encryption technology can be exploited to construct
a decryption oracle, which allows the adversary to decrypt
any memory block encrypted with the guest VMs’ memory
encryption key Kvek. The oracle can be frequently and repeat-
edly queried and thus can be exploited as an attack primitive
for more advanced attacks against SEV-enabled guests.

As mentioned in Section 2.3, the DMA operation from
the SEV-enabled VM is conducted with the help of memory
pages shared with the hypervisor. When DMA operates in the
DMA_TO_DEVICE mode, data is transferred by the IOMMU
hardware to the shared memory, and then copied by CPU
in the SEV-enabled VM to its private memory; when DMA
operates in the DMA_BIDIRECTIONAL mode, the SEV-enabled
VM first copies the data from encrypted memory to the shared
memory, and then the DMA reads or writes are performed on
the shared memory.

Both these modes of operations provide the adversary an
opportunity to observe the transfer of data blocks from mem-
ory pages encrypted by Kvek to memory pages that is not
encrypted (from the hypervisor’s perspective). Therefore, if
the adversary alters the ciphertext of the data blocks in the
encrypted memory page before they are copied by the guest
VM, after the memory copy, the corresponding plaintext can
be learned from the shared memory directly.

The construction of such a decryption oracle is shown in
Figure 3. The decryption oracle can be constructed in three
steps: pattern matching, ciphertext replacement, and packets
recovery. We use network I/O as an example. The adversary
exploits the network traffic in Secure Shell (SSH) to construct
the decryption oracle. But we stress that any I/O traffic can be
exploited in similar manners. In the following experiments,
we configured the guest VM to use OpenSSH_7.6p1 with
OpenSSL 1.0.2n, which is default on Ubuntu 18.04.

USENIX Association 28th USENIX Security Symposium 1261

Figure 3: A decryption oracle. Step ¿, the hypervisor con-
ducts pattern matching using page-fault side channels to de-
termine the address of Bp. Step ¡, the hypervisor replaces a
ciphertext block in Bp with the target memory block, which
will be decrypted when copied to Bs. Step ¬, QEMU recovers
the network packet headers.

3.3.1 SSH and Network Stacks

To control the SEV-enabled guest remotely, the owner of the
VM typically uses SSH protocol to remotely login into the
VM and controls its activities. To copy data to and from
the VM, protocols like SCP, which is built on top of SSH, is
commonly used. Particularly, we consider the SSH traffic after
the remote owner has already authenticated with sshd and a
secure communication channel has been established. Because
the SSH handshake protocol is performed in plaintext, the
adversary who controls the hypervisor and QEMU can act as
a man-in-the-middle attacker and recognize the established
the secure channel by its IP addresses and TCP port number.
Once the secure channel is established, SSH command and
output data will be transferred using encrypted SSH packets
that are transmitted in interactive mode [31].

In the interactive mode, each individual keystroke guest
owner types will generate a packet that is sent to the SEV-
enabled VM, which will be transferred by DMA to a mem-
ory buffer shared between the guest and the hypervisor. The
packet is then copied by the guest to a private memory page
encrypted using Kvek. Then the data is handled by the net-
work stack in the guest OS kernel. The headers of the packet
are then removed and the payload data is forwarded to the
user-space application. Then the SSH server processes the
keystroke and responds with an acknowledgement packet.
The acknowledgement packet is copied back to the kernel
space, wrapped by the corresponding header information, and
then copied to the shared memory buffer. The last memory
copying also decrypts the memory using the guest VM’s Kvek.

Therefore, our attack primitives target this process. As a re-
sult, every network packet generated by the guest VM can
be exploited as a decryption oracle that helps the adversary
decrypt one or multiple memory blocks.

3.3.2 Pattern Matching Using Fine-grained Page-fault
Side Channels

Let us denote the private memory buffer as Bp, whose gPA
is Ppriv, and the shared memory buffer as Bs, whose gPA is
Pshare. The primary challenge in this attack is to identify the
Ppriv. As this address is never directly leaked, the adversary
needs to perform a page-fault side-channel analysis.

Fine-grained page-fault side channels in SEV. The page
fault side channel was first studied by Xu et al. in the context
of Intel SGX [36]. As an SGX attacker controls the entire
operating system, he or she can manipulate the page table
entries (PTE) and set the present bit of the PTEs of pages
that are mapped to the targeted enclave. By doing so, once the
enclave program accesses the corresponding memory pages,
the control flow will be trapped into the OS kernel through a
page fault exception. On x86 processors, the faulting address
will be stored in a control register, CR2 so that the page-fault
handler could learn the entire faulting address. To provide
secrecy, SGX masks the page offset of the faulting address
and leaves only the virtual page number in CR2.

Similarly, on the AMD platform, the adversary that com-
promises the hypervisor could also exploit the page-fault side
channels to track the execution of the SEV-enabled VMs. Al-
though the mapping between the guest VM’s guest virtual
address (gVA) to gPA is maintained by the guest VM’s page
table and is encrypted by Kvek, the hypervisor could manipu-
late the nested page tables (NPT) to trap the translation from
gPAs to host physical addresss (hPA). Unlike SGX, SEV does
not mask the page offset, providing more fine-grained obser-
vation to the adversary.

Moreover, the page-fault error code returned in the
EXITINTINFO field of VMCB can also be exploited in the
SEV page-fault side-channel analysis. Specifically, the page-
fault error code is a 5-bit value, revealing the information of
the page fault. For example, when bit 0 is cleared, the page
fault is caused by non-present pages; when bit 1 is set, the
page fault is caused by a memory write; when bit 2 is cleared,
the page fault takes place in the kernel mode; when bit 3 is set,
the fault is generated form a reserved bit; when bit 4 is set,
the fault is generated by an instruction fetch. The error code
provides detailed information regarding the reasons of the
page fault, which can be leveraged in side-channel analysis.

Pattern matching. With such a fine-grained side channel, the
adversary could monitor the memory access pattern of the
guest when it receives an SSH packet. Particularly, after deliv-
ering an SSH packet to the SEV-enabled VM, the adversary
immediately initiates the monitoring process and marks all of

1262 28th USENIX Security Symposium USENIX Association

the guest VM’s memory pages inaccessible by clearing the
present bit of the PTEs. Every time a memory page is ac-
cessed by the guest, a page fault takes place and the adversary
is able to learn the entire faulting address Pi. Note here the
faulting address in the guest VM refers to the guest physi-
cal address as the guest virtual address is not observable by
the hypervisor. After the page fault, the adversary resets the
present bit in the PTE to allow future accesses to the page.
Therefore, with the fine-grained page fault side channel, one
only needs to collect information regarding the first access to
a memory page. The monitoring procedure stops when the
acknowledgement packet is copied into Bs. At this point, the
adversary has collected a sequence of faulting addresses <P1,
P2, · · · , Pm >.

Internally in the guest VM, when sshd is sending a packet,
the encrypted data is first copied to the buffer of the transport
layer, then the buffer of the network layer, and then the buffer
of the data link layer. In each layer, new packet headers are
added. Eventually, the entire network packet is stored in a
data structure called sk_buff. Finally, the kernel will call
dev->hard_start_xmit to transfer the data in sk_buff to
the device driver, where Bp is located.

Both Ppriv and the address of sk_buff, Psk, should be found
in the faulting addresses sequence <P1, P2, · · · , Pm >. It is
because the memory pages that store the private memory
buffer Bp and sk_buff are not otherwise used during the
process of sending network packets. The adversary could
combine page offsets, page frame numbers, the page-fault
error code, and the number of page faults between the two
page faults of Bp and sk_buff to create a signature, which
can be used to find Ppriv. For example, the page-fault error
code of Bp is 0b110 and the page-fault error code of sk_buff
is 0b100; the page offset of Ppriv is usually 0x0fa or 0x8fa and
the offset of sk_buff usually ends with 0xe8 or 0x00; and the
number of page faults between Bp and sk_buff is roughly 20.
With these signatures, the adversary can identify Ppriv from
the sequence of faulting addresses. Of course, the signature
may change from one OS version to another, or change with
different OS kernel. However, because the adversary controls
the hypervisor, such information can be re-trained offline,
before performing the attacks.

It was indicated by AMD researchers (during an offline
discussion) that SEV-ES should mask the page offset infor-
mation when there is a VMEXIT. However, we were not able
to find related public documentation. Moreover, as the KVM
patch for SEV-ES support is not yet available at the time of
writing, we were not able to validate the claim or estimate
the remaining leakage (e.g., error code, page offset) after the
patch. However, regardless of the hardware changes, a coarse-
grained page-fault side channel in which the page frame num-
ber of the faulting address is leaked must remain. To show
that the demonstrated attack still works, we conducted experi-
ments to perform pattern matching without page fault offsets
and error code information. Specifically, we performed pat-

Figure 4: Format of an SSH packet.

tern matching using only the faulting page numbers, with
the guest VM running different Ubuntu versions (e.g., 18.04,
18.04.1 and 19.04) and different kernel versions (4.15.0-20-
generic, 4.15.0-48-generic and 5.0.0-13-generic). The results
show that after training in one virtual machine, the pattern
matching rules can work well even in different virtual ma-
chines with the same Ubuntu version and kernel version—the
attacker is still able to successfully identify the page frame
number of Ppriv. To determine the complete address of Ppriv,
the attacker could determine the offset by scanning the en-
tire memory page and looking for content changes (e.g., in a
90-byte buffer).

3.3.3 Replacing Ciphertext

After determining Ppriv, the adversary replaces aligned SSH
header in Bp with the ciphertext he or she chooses to decrypt.
As shown in Figure 4, the packet headers include a 6-byte
destination address, a 6-byte source address, a 2-byte IP type
(e.g., IPv4 or IPv6), 1-byte IP version and IP header length,
1-byte of differentiated services field, 2-byte packet length,
2-byte identification, 2-byte of IP flags, 1-byte time-to-live,
1-byte protocol type, 2-byte checksum, and 4-byte source IP
address and 4-byte destination address, and 20-bytes TCP
headers (start with 2-byte source port and 2-byte destination
port).

As shown in Figure 4, Ppriv has the offset address ending
with 0xfa. Because SEV encrypts data in 16-byte aligned
blocks, only part of the TCP/IP header (i.e., header in gray
blocks in Figure 4) can be used to decrypt ciphertext. Addi-
tional constraints apply if the packet needs to be recovered
later. Before replacing the packet header with the chosen
ciphertext, the adversary performs a WBINVD instruction to
flush the guest VM’s cached copy of Bp back to memory. It
is because cache coherence is not maintained by the hard-
ware between cache lines with different ASIDs. To make sure
the guest VM’s copy does not overwrite our changes to the
memory, WBINVD instruction needs to be called first.

The ciphertext replacement takes place before memcpy, af-
ter Bp is accessed and before Bs is accessed. Bs is located
inside the SWIOTLB pool, which is the next available address
within SWIOTLB that can be used by the guest. After replacing
a few blocks in Bp, another WBINVD instruction is performed
to ensure the guest VM reads and decrypts up-to-date cipher-

USENIX Association 28th USENIX Security Symposium 1263

text in memory. All replacement operation is achieved by
IOremap instead of Kmap, since Kmap decrypts data with the
hypervisor’s key first and IOremap directly operates data in
the memory without decryption.

We use the following example to illustrate the attack. Let
the ciphertext c be a 16-byte aligned memory block with
the gPA of Pc. The function which can translate gPA to hPA
is called hPA(). The goal of the attack is to decrypt c. The
adversary replaces a 16-byte data in the SSH header that
begins with address (Ppriv + 16)/16 ⇤ 16 with c. After the
data in Bp is copied to Bs, the adversary could read the de-
crypted SSH packet and extract the plaintext of decrypted
memory block, d, from the corresponding location of the
packet. However, d is not the plaintext of c yet, as SEV’s mem-
ory encryption involves a tweak function T (). That is, c =
EKvek(m � T (hPA(Pc))) but d = DKvek(c)� T (hPA((Ppriv +
16))/16⇤16). Therefore, the plaintext message m of cipher-
text c can be calculated by m = d�T (hPA((Ppriv+16))/16⇤
16)�T (hPA(Pc)).

3.3.4 Packets Recovery

To make the attack stealthy, the adversary needs to recover
the network packet with decrypted data before those packets
are passed to the physical NIC device. As shown in Figure 4,
the SSH header also contains metadata of the packet. When
the malicious hypervisor injects chosen ciphertext into the
memory block with offset = 0x100, the adversary only needs
to be concerned about a portion of the source IP address, IP
protocol type, IP tags, TCP header length, and the identifica-
tion of the packet. Majority of the fields are determined. The
identification of the IP packet increases by 1 every time SSH
server replies a packet. So when hypervisor tries to recovery
the (plaintext) packet from the QEMU side, it only need to
correct the packet length, increase identification by 1 and copy
the remaining portion from previous packet such as source
address, header length, time to live and protocol number.

3.4 Encryption Oracle
We next show the construction of a memory encryption ora-
cle using unprotected I/O operations. The encryption oracle
stealthily encrypts a chosen plaintext message using a guest
VM’s memory encryption key Kvek. Similar to the construc-
tion of the decryption oracle, during the DMA operation of
the guest that transfers data from the device to the encrypted
memory, the adversary changes the message m in the shared
memory buffer Bs, waits until it is copied to the private buffer
Bp in the encrypted page, and then extracts the corresponding
ciphertext Ekg(m) from Bp.

To determine the gPA address of Bp and retrieve the cipher-
text of the plaintext message at address Pt , the steps shown in
Figure 5 are taken. Again, we leverage the fine-grained page-
fault side channel we used in the previous section. Specifically,

Figure 5: An encryption oracle. Step ¿, QEMU forwards an
incoming packet to the guest. Step ¡, QEMU passes the ad-
dress of Bs to the hypervisor. Step ¬, a page fault immediately
after the fault at Bs is captured by the page fault handler. Step
√, message m0 is placed in Bp. Step ƒ, page fault handler
returns the control to the guest.

we modified all memory pages’ PTEs right after the QEMU
finishes writing the packet into SWIOTLB and before the
QEMU notifying guest VM about the DMA write. Then, when
the guest VM performs a memcpy operation to copy the data,
the adversary will observe a sequence of page faults: <...Pshare,
Ppriv...>, where Pshare is the address of Bs and Ppriv is the ad-
dress of Bp. The page fault at Ppriv will take place right after
the page fault at Pshare. When the hypervisor handles the page
fault at Ppriv, it replaces the 16-byte aligned data block with
the message m0, where m0 =m�T (hPA(Ppriv))�T (hPA(Pt)),
where Pt is the gPA of the target address to which the adver-
sary wishes to copy m. The corresponding ciphertext will be
c = Ekg(m�T (hPA(Pt))), which can be used to replace the
ciphertext at address Pt .

The encryption oracle can be typically exploited to inject
code or data into the SEV-enabled VM’s encrypted memory,
or it can be used to make guesses of the memory content
by providing a probable plaintext. We note that to use the
encryption oracle, the adversary may simply generate mean-
ingless packets and send them to the guest VM, which will
be discarded. But the oracle can still be constructed and used.
The only downside of this approach is that the guest VM will
observe large volume of meaningless network traffic and may
become suspicious of attacks.

4 Evaluation

We implemented our attacks on a blade server with an 8-
Core AMD EPYC 7251 Processor, which has SEV enabled
on the chipset. The host OS runs Ubuntu 64-bit 18.04 with

1264 28th USENIX Security Symposium USENIX Association

Linux kernel v4.17 (KVM hardware-assisted virtualization
supported since v4.16) and the guest OS also runs Ubuntu
64-bit 18.04 with Linux kernel v4.15 (SEV supported since
v4.15). The QEMU version used was QEMU 2.12. The SEV-
enabled guest VMs were configured with 1 virtual CPU, 30GB
disk storage, and 2GB DRAM. The OpenSSH server was
installed from the default package archives.

4.1 Pattern Matching

We first evaluate the pattern matching algorithm’s accuracy of
determining Ppriv. To obtain the ground truth, we modified the
guest kernel to log the gPA address of sk_buff, the source
gPA and destination gPA of memcpy, as well as the size of
each DMA read or write. All the data was recorded in the
kernel debug information, which can be retrieved using a
Linux command dmesg.

The experiments were conducted as follows: We ran a
software program AnJian [13] (an automated keystroke gener-
ation tool) on a remote machine, which opened a terminal that
was remotely connected to the SEV-enable VM through an
SSH communication channel. AnJian automatically typed on
the SSH terminal two Linux commands cat security.txt
|grep sev and dmesg at the rate of 10 keystrokes per second.
This was used to simulate the remote owner controlling the
SEV-enabled VM through SSH. The adversary would make
use of the generated SSH packets to perform memory decryp-
tion. The dmesg command also retrieved the kernel debug
message that recorded the ground truth.

At the same time, the pattern matching was performed by
the adversary on the hypervisor side. The page-fault side-
channel analysis was conducted upon receiving every incom-
ing SSH packet to guess the address Ppriv. There were three
outcomes of the guesses: a correct guess, an incorrect guess,
and unable to make a guess. Because there were 33 keystrokes
generated by AnJian, the adversary was allowed to guess Ppriv
for 33 times in each experiment. The experiments were con-
ducted 20 times.

Figure 6 shows the precision and recall of these 20 rounds
of experiments. Precision is defined as the ratio of the number
of correct guesses and the number of times that a guess can be
made. Recall is defined as the ratio of the number of correct
guesses and the number of total SSH packets. The average
precision is 0.956, the average recall is 0.847 and the average
F1 Score is 0.897.

4.2 Persistent Bp

According to our experiments, the Bp will remain unchanged
and reused for multiple network packets. This greatly helps
the adversary, either by performing pattern matching once
and reusing the same Bp directly in subsequent packets, or by
improving the accuracy of the guesses.

Figure 6: The precision and recall of determining Ppriv in 20
rounds or experiments.

Figure 7: Reduction of incorrect guesses using the N-Streak
strategy.

Improving attack fidelity using persistent Bp. The persis-
tent Bp can be used to reduce the number of incorrect guesses.
During a real-world attack, when Ppriv is incorrectly guessed,
the ciphertext replacement may crash the guest VM (although
we have not experienced any crashes in our experiments). As
such, a safer strategy of when to perform ciphertext replace-
ment is only after correctly guessing Ppriv N times in a streak,
which we call the N-streak strategy. We then applied this
strategy to Round 20, 6 and 11, which have the highest FPR
(i.e., 0.167, 0.133, 0.103, respectively). As shown in Figure 7,
when by increasing N (i.e., 1, 2, 3), the number of incorrectly
performed ciphertext replacement is reduced.

Packet rate vs. Bp persistence. We further evaluated the ef-
fect of Bp persistence when the rate of SSH packets varies.
Again, on the remote machine, we used AnJian to generate
keystrokes at a fixed rate, ranging from 0.5 keystrokes per
second, to 20 keystrokes per second. The rate of SSH ac-
knowledgement packets is close to the keystroke rate. For
each keystroke rate, 500 keystrokes were generated and the
number of different Bps were reported in Figure 8. We can
see that as the packet rate increases, fewer number of Bps will
be used to send SSH packets. We repeated this experiment
and collected over 200 different Bps after generating 5000
keystrokes with rates ranging from 0.5 to 20 per second. The
statistics of the repeated use of Bps are shown in Figure 9.

4.3 I/O Performance Degradation
Conducting page-fault based side-channel analysis to guess
Ppriv and performing ciphertext replacement will slow down

USENIX Association 28th USENIX Security Symposium 1265

(a) 0.5pps (b) 1pps (c) 2pps

(d) 5pps (e) 10pps (f) 20pps

Figure 8: The number of different Bps used with various rates of packets (pps).

Figure 9: Statistics of repeated Bps.

the I/O operations of the guest VM. To evaluate the degree of
performance degradation, we evaluate the SSH response time
on the server side during the attacks. The SSH response time
measures the time interval between the QEMU receives an
incoming SSH packet to the time that an SSH response packet
is sent to QEMU. Note the measurements do not include
network latency.

Figure 10 shows the SSH response time under three con-
ditions: Original (not under attack), Bp Persistent (assuming
Bp does not change) , and Guess Every Time (assuming Bp
changes and making guesses every time). The keystroke rate
used in the experiments were 10 keystrokes per second, and

in total 1,000 keystrokes were generated during the tests. We
can see from the figure, the average SSH response latency
without attack is 2.5ms and the median is 0.99ms. The aver-
age latency for SSH connection under a Bp-persistent strategy
is 6.81ms and the median is 2.4ms. The average latency for
SSH connection under a guess-every-time strategy is 8.0ms
and the median is 8.7ms. Because the typical network latency
of cloud servers are 40-60ms within US and more than 100ms
worldwide [5], it is very difficult for the VM owners to detect
the latency caused by the attacks.

4.4 An End-to-End Attack

We conducted an end-to-end attack in which the adversary
decrypts a 4KB memory page that is encrypted with the guest
VM’s Kvek. The attack assumes a network traffic with the rate
of 10 pps, which is simulated using the same method used in
the previous sections. Table 2 shows the number of packets
and time used to complete the attack, when one or two 16-byte
aligned blocks were exploited for the data decryption. We can
see that in the four trials we conducted, roughly 300 packets
are needed to decrypt the 4KB page, which takes about 40
seconds. The speed of the attack doubles if the first two blocks
of the packets were used to decrypt data.

1266 28th USENIX Security Symposium USENIX Association

Table 2: End-to-end attack performance.

Round 1 Block 2 Blocks
Packets used Time(s) Packets used Time(s)

1 292 43.56 148 21.29
2 329 40.78 177 20.04
3 326 39.21 154 18.99
4 299 33.58 154 16.95

Figure 10: I/O performance degradation evaluated using SSH
response time (network latency excluded).

5 A Path Towards I/O Security in SEV

The root cause of the problem is the incompatibility between
AMD-V’s I/O virtualization with SEV’s memory encryption
scheme. Specifically, the primary reason of the attacks de-
scribed in Section 3 is that existing IOMMU hardware only
supports memory encryption with ASID = 0 and the operated
memory is encrypted with the hypervisor’s memory encryp-
tion key. Therefore, every I/O operation from the guest VM
must go through a shared memory page with the hypervisor.
To address this limitation, IOMMU must allow DMA oper-
ations to be performed under the ASIDs of other contexts.
Meanwhile, it must prevent the privileged software from abus-
ing such IOMMU operations. This design, however, will be
very challenging to implement in practice. According to our
discussion with AMD researchers, future releases of SEV
CPUs are unlikely to address this issue. Therefore, alternative
solutions must be identified.

In addition to this fundamental issue, the decryption oracle
is also enabled by two other vulnerabilities of SEV: (1) no
integrity protection of the encrypted memory, and (2) knowl-
edge of the tweak function T (). AMD researchers suggested
that future SEV CPUs will disable the encryption oracle by
providing memory integrity and altering the implementation
of the tweak function T (). While authenticated memory en-
cryption disables all known attacks against SEV, details of its
implementation are yet to be disclosed. We discuss some of

Data MT

Root on chip

MT allocated
in Mem

67% 33%

Data Hash

78.6% 20%

Ctr BMT

1% 0.4%

Root on chip

(a) (b)

Figure 11: Merkle Tree (a) and Bonsai Merkle Tree used in
conjunction with split counter mode encryption (b).

the potential considerations in Section 5.1. Future versions of
the tweak function will be implemented as T (k,a), where a
is the physical address and k is a random input that changes
after every system reboot. We leave the investigation of these
vulnerabilities to future work when the technical details are
published. In Section 5.2, we present a temporary software
fix that works on existing AMD processors (Section 5.2).

It is worth noting that AMD researchers suggested that
SEV-ES masks the page offset during page fault. However,
we could not find relevant documentation or validate the claim
on our testbed. Nevertheless, our analysis (see Section 3.3.2)
suggests that the attack is still effective when the page offset
information is unavailable. Specifically, we empirically evalu-
ated the attack method that does not rely on page offsets by
repeating the experiments in Section 4.1: the mean precision
is 0.900, the mean recall is 0.730 and the mean F1 score is
0.800, which is only slightly lower.

5.1 Authenticated Encryption
Authenticated encryption must be adopted to prevent replay
attacks and replacement attacks of the encrypted ciphertext.
Merkle Tree (MT) [14] has been proposed for detecting re-
play and replacement attacks for protecting memory integrity.
MT can be built and maintained over any region of memory,
and hence it can be used to protect the entire memory or only
memory allocated to a VM, or any portion of it. There are two
types of MT that can be used, depending on the encryption
mode. For direct encryption mode, the MT covers data. For
counter-mode encryption, it was shown that replay was only
possible if the attacker replays data, its hash, and its counter
simultaneously. Hence, protecting counter freshness is suf-
ficient to protect against replay [26]. MT over counters is
referred to as Bonsai Merkle Tree (BMT), a variant of which
was chosen for implementation in Intel SGX MEE [18].

A fundamental trade off exits between the choice of en-
cryption mode and the overheads of MT. When 128-bit hash
is used for MT, MT (and hashes) over data incur memory
capacity overhead of 33% (i.e. data-to-MT nodes ratio of
2:1), as illustrated in Figure 11. On the other hand, BMT
incurs an overhead of 20% for hashes, plus 0.4% for BMT
nodes. Hashes are needed for both encryption modes to pro-

USENIX Association 28th USENIX Security Symposium 1267

AES-
CTR

Page
ID

Page
Offset

Major
Counter

Minor
Counter PaddingIV

Key

Fetched Block
(from off-chip Mem)

Ciphertext
(to off-chip Mem)

Pad

Counter
Cache

Last Level Cache (LLC)

GF
Mult

Hash

XOR XOR

Figure 12: Counter mode encryption with split counters using
Galois Counter Mode authentication.

tect against non-replay tampering of memory data. In addition,
counter-mode encryption requires additional storage for coun-
ters, which depends on the type of counters. 64-bit monolithic
counters take up 9% overheads, but split-counters [37] take up
only 1%. Taken together, protection against replay incurs 13%
memory capacity with direct encryption but only 1.4% with
counter mode encryption (Figure 11). For a 1 TB memory,
the difference amounts to a substantial 116 GB.

Counter mode encryption is illustrated in Figure 12. Coun-
ters are cached on chip, either in regular caches, or in a special
“counter cach”. With split counters, each page (4KB) of data
has its own major counter, and each block (64B) in a page has
its own minor counter. When there is a last level cache (LLC)
miss, the counter values (major and minor) are concatenated
with the page ID and block address of the page (i.e. page off-
set of the block) to produce a spatially and temporally unique
initial vector (IV) [37]. The IV is then encrypted to produce
a pad, which will be XOR-ed with ciphertext of data fetched
from memory to yield data plaintext. With Galois Counter
Mode, the hash of data is obtained a few clock cycles later.
Counter mode encryption is more secure than direct mode en-
cryption due to spatial and temporal uniqueness of ciphertexts
even for a single plaintext value. Furthermore, as illustrated
in the figure, decryption latency is largely overlapped with
LLC miss latency; the only exposed latency is 1-cycle XOR
of pad and data ciphertext. In contrast, direct memory mode
fully exposes decryption latency in the critical path of mem-
ory fetch. Therefore, in terms of security protection against
replay, memory capacity costs, and performance, AMD SEV
can benefit from counter mode encryption and BMT.

A MT/BMT protects the memory from replay or tampering
at all time. It is also possible to selectively protect memory
region integrity only at times in which they are “expected”
to be vulnerable. For example, the time window in which
IOMMU buffer is vulnerable is between the time it is writ-
ten by the DMA until it is read/consumed by the VM. One
could take a hash of the memory region at DMA write and
verify it when the VM reads the region. Any tampering or

replay attempts will be detected. Selective integrity protec-
tion may obviate the need for full MT/BMT for attacks that
occur within the vulnerable window, but leaves the memory
integrity unprotected at other time.

5.2 A Temporary Software Solution

In this section, we present a software solution that can tem-
porarily solve the I/O insecurity issues discussed in this paper.
The key idea is to make sure the hypervisor never observe any
unencrypted I/O data to/from the SEV-enabled VM. This can
be achieved using SEV’s platform management APIs [3] and
the transport encryption key of the VM Ktek.

Ktek is a shared Diffie-Hellman (DH) key between the VM
owner and the SEV firmware. Particularly, to launch an SEV-
enabled VM on an SEV platform, the owner of the VM first re-
quests the Diffie-Hellman (DH) certificate from the platform,
which contains the platform’s DH public key. The correspond-
ing private key is kept inside the SEV firmware, which cannot
be extracted by the system administrator or the hypervisor.
The VM owner then sends her DH public key to SEV platform,
so that she establishes a shared transport encryption key Ktek
with the SEV firmware. Ktek is only known by the VM owner
and the SEV firmware, but not known to the VM itself or hy-
pervisor. SEND_UPDATE_DATA and RECEIVE_UPDATE_DATA
are two commands (among many others) implemented by
SEV to assist the hypervisor to launch and manage SEV-
enabled VMs [3]. After the VM is launched, the hypervisor
may use SEV’s SEND_UPDATE_DATA command to atomically
decrypt a piece of memory with Kvek and re-encrypt with
Ktek or use RECEIVE_UPDATE_DATA command to decrypt the
memory with Ktek and re-encrypt with Kvek.

Our proposed solution retrofits these APIs and Ktek to pro-
tect I/O operations. Particularly, the guest VM kernel and the
QEMU can be modified so that the guest VM never copies
data between the encrypted memory and the unencrypted
memory. Instead, to perform any I/O operation to the SEV-
enabled VM, the hypervisor issues the SEND_UPDATE_DATA
and RECEIVE_UPDATE_DATA commands to atomically de-
crypt and re-encrypt data using the two keys Kvek and Ktek. As
both keys are protected inside the SEV firmware, the hypervi-
sor is not able to learn the plaintext during the I/O operations.
The SEV firmware serves as a trusted relay of the I/O paths.

However, this solution is only a temporary fix of the issue.
This is because the I/O traffic is encrypted with Ktek, which
is only known to the owner of the VM. Therefore, all I/O
operations, including network I/O, disk I/O, and display I/O
must be forwarded to a trusted server that is controlled by the
VM owner (as shown in Figure 13). Acting as an I/O proxy,
the trusted server may limit the application scenarios of SEV
and greatly reduce the I/O performance.

1268 28th USENIX Security Symposium USENIX Association

Figure 13: An illustration of the temporary software solution.

6 Related Work

6.1 Existing Security Studies on SEV
The security issues of AMD’s SEV have been placed under
the spotlight since its debut. Demonstrated security attacks
mainly targets SEV’s unencrypted VMCB [17] and SME’s
unauthenticated memory encryption [9, 12, 17, 25]. The for-
mer issue has been fixed using SEV-ES [19] and the latter
could be addressed with integrity protection of the encrypted
memory. An implementation bug in the firmware of AMD
secure processors have also been reported [11]. But since the
issue was not related to a design failure, we leave it as out of
scope of the paper. We detail these related work as follows:

Unencrypted VMCB. Hetzelt and Buhren analyzed the se-
curity of SEV from the perspective of unencrypted virtual
machine control block (VMCB) [17]. VMCB is a data struc-
ture in memory shared by the hypervisor and the guest VM,
which stores the values of guest’s general purpose registers
and control bits for handling virtual interrupts. At the time
of VMExit, a malicious hypervisor may learn the machine
state of the guest VM by reading register values stored in the
VMCB and subsequently alter their values before VMRun to
control the registers of the guest VM. Hetzelt and Buhren [17]
exploit unencrypted VMCB using code gadgets in the guest
memory (similar to return-oriented programming (ROP) [29])
to arbitrarily read and write encrypted memory in the guest
VM. The security issue caused by unencrypted VMCB, how-
ever, has been mitigated by SEV-ES [19], which adds another
indirection layer during VMExit that allows the guest VM to
be notified before Non-Automatic Exits (NAE)—exits requir-
ing hypervisor emulation—and prepares a new data structure
called Guest Hypervisor Communication Block—a subset of
VMCB—to communicate with the hypervisor. The machine
states stored in the VMCB are instead encrypted with authen-
tication, such that they are inaccessible from the hypervisor.

Unauthenticated memory encryption. Because SME does
not use authenticated encryption schemes, the integrity of

the encrypted memory is not protected. As such, malicious
hypervisors may alter the ciphertext of the encrypted memory
without triggering errors in the decryption process of the guest
VMs. Prior studies have demonstrated a variety of approaches
to exploit such unauthenticated memory encryption:

• Chosen plaintext attacks. Du et al. discovered that SME
uses Electronic Codebook (ECB) mode of operation in
its memory encryption [12], which implies that the same
plaintext always leads to the same ciphertext after encryp-
tion. As the only security measure is a physical address
based tweak function XORed with the plaintext before en-
cryption, knowledge of the tweak function will enable the
adversary to deduce the relationship between the plaintext
of two memory blocks (i.e., of 16 bytes) if their ciphertext
are the same. Du et al. exploit this weakness by construct-
ing a chosen plaintext attack (via an HTTP server installed
on the guest VM) and then replace the ciphertext of an
sshd program with the ciphertext of instructions specified
by the adversary (after applying the tweak functions).

• Fault injection attacks. Buhren et al. studied fault injec-
tion attacks on a simulated SME implementation [9]. Their
work considers a different threat model, which assumes
that the adversary is able to conduct physical DMA at-
tacks [6] and also run an unprivileged process on the target
OS. The unprivileged process performs Prime+Probe side-
channel attacks to trace the execution of the SME protected
application and, at the proper moment of a cryptographic
operation, utilizes DMA attacks to inject memory faults to
infer secret keys (or key components). We believe Buhren
et al.’s attack against SME can be migrated to SEV as
well, which is even easier to conduct as the hypervisor can
be assumed to be malicious.

• Page table manipulation. Remapping guest pages in
the nested paging structures to replay previously cap-
tured memory pages was first studied by Hetzelt and
Buhren [17]. A similar idea was later demonstrated by
Morbitzer et al. in SEVered, an attack that by manipulat-
ing the nested page table alters the virtual memory of the
guest VMs to breach the confidentiality of the memory en-
cryption [25]. More specifically, SEVered is carried out in
the following steps: First, the malicious hypervisor sends
network requests to the guest’s network-facing application,
e.g., an HTTP server, which allows the attacker to down-
load files larger than one memory page. Second, using a
coarse-grained page-level side channel, the attacker deter-
mines which of the encrypted guest VM’s memory pages
are used to store the response data. Third, after locating
these pages, the malicious hypervisor changes the page
mappings in the nested page table so that these virtual
pages used by the guest are mapped to different physical
pages. As a result, memory content of these pages can be
leaked through the responses of the network applications.
The same authors further extend SEVered to perform more

USENIX Association 28th USENIX Security Symposium 1269

realistic attacks [24], by extracting secret keys in real-
world protocols and applications such as TLS, SSH, full
disk encryption (FDE). Their attack makes use of the same
side channels to identify the set of memory pages that
are likely to contain those secrets and scans those pages
(roughly 100 pages) until the secrets are found. Both these
works only present decryption oracles but not encryption
oracles.

While the security issues of SEV’s I/O operations are or-
thogonal to the problems of unauthenticated memory encryp-
tion, the decryption oracle presented in this paper does rely
on the lack of integrity protection for the ciphertext blocks.
However, compared to previous memory decryption attacks
against SEV [24, 25], our work differs primarily in three as-
pects. First, Morbitzer et al. [24, 25] manipulate unprotected
nested page tables to decouple the mapping between the gVAs
and the memory contents, while our decryption oracle directly
replaces memory blocks used in the I/O buffer. The hardware
mechanisms to defend against these two attacks may differ.
Our attack highlights the necessity of mitigating both threats.
Second, instead of exploiting a network-facing application
executed in the guest VM to accept attacker-controlled data,
our attack could make use of any I/O traffic, which is more
general. Our paper suggests that application-specific defenses,
such pruning secrets after use [24], may not work. Third, the
attack in Morbitzer et al. requires the attacker to actively
generate network traffic to the guest VM, which makes it eas-
ily detectable. In contrast, our decryption oracle can make
use of existing I/O traffic, which can be very stealthy. More-
over, while the memory integrity issues are expected to be
addressed in the next release of SEV CPUs, the fundamen-
tal I/O security problem studied in this paper will remain.
The encryption oracle will not be mitigated unless the tweak
function is completely secured.

Other studies. Mofrad et al. [23] compare Intel SGX and
AMD SEV, in terms of their functionality, use scenarios, secu-
rity, and performance implications. The study suggests SEV
is more vulnerable than SGX as it lacks memory integrity
and has a bloated trust computing base (TCB). Moreover, the
performance comparison suggests AMD SEV technology per-
forms better than Intel SGX. Wu et al. proposes Fidelius [35],
a system that leverages a sibing-based protection mechanism
to partition an untrusted hypervisor into two components, one
for resource management and the other for security protec-
tion. The security of guest VMs is enhanced by the “trusted”
security protection component, which, while interesting and
effective, unfortunately contradicts with SEV’s original in-
tention of eliminating the hypervisor from the TCB. Fidelius
mentioned a method to protect disk I/O that is similar to our
temporary fix (see Section 5.2) but implies that the disk im-
age is shipped to the SEV platform. Thus it requires using the
same Ktek every time the disk image is used. Our proxy-style
solutions in Section 5.2 is a generalization of their approach.

6.2 Security Threats of Intel TEEs

Intel TME and MKTME. Intel’s counterparts of AMD’s
SME and SEV are Total Memory Encryption (TME) and
Multi-Key Total Memory Encryption (MKTME) [18]. The
concept of TME is almost the same as AMD SME: an AES-
XTS encryption engine sits between a direct data path and ex-
ternal memory buses to encrypt data when leaving the proces-
sor and decrypt it when entering the processor. TME supports
a single ephemeral encryption key for the entire processor.
In contrast, MKTME supports multiple keys; it labels each
page table entry with a KeyID to select one of the ephemeral
AES keys generated in the encryption engine. Different from
AMD SEV, guest VMs in MKTME may have more than one
AES key. KeyID0 is used for guest VM to share pages with
hyperviosr. KeyIDN is assigned to guest the Nth VM by hy-
pervisor for guest’s private page. However, the guest VM is
able to obtain other KeyIDs to share memory with another
guest VMs. As we were not able to purchase a machine with
TME and MKTME on the market at the time of writing, we
leave the analysis of these Intel’s technologies to future work.

Intel SGX. Intel Software Guard eXtension (SGX) is an
instruction set architecture extension that supports isola-
tion of memory regions of userspace processes. Through a
microcode-extended memory management unit, memory ac-
cesses to the protected memory regions, dubbed enclaves,
are mediated so that only instructions belonging to the same
enclave are permitted. Software attacks from all privileged
software layers, including operating systems, hypervisors,
system management software, are prevented by SGX. A hard-
ware Memory Encryption Engine sits between the processor
and the memory to encryption memory traffic on the fly, so
that confidentiality of the enclave memory is guaranteed even
with physical attackers. Remote attestation is supported in
SGX to guard the integrity of the enclave code.

Similar to AMD’s SEV, SGX constructs TEE on Intel pro-
cessors. However, it differs from SEV as it only isolates por-
tions of the user processes’ memory space, whereas SEV
encrypts the memory of the entire virtual machine. Develop-
ers of SEV do not need to rewrite the software when using
AMD’s TEE; but SGX developers have to manually partition
applications into trusted and untrusted components, and re-
compile the source code with the SDKs provided by Intel.
SGX machines have been available on market since late 2015.
So far, two major types of attacks have been demonstrated to
SGX applications.

• Side-channel attacks. Prior studies have demonstrated
that enclave secrets in SGX can be exfiltrated through
side channels on the CPU caches [8, 15, 16, 27], branch
target buffers [22], DRAM’s row buffer contention [34],
page-table entries [33, 34], and page-fault exception han-
dlers [30, 36]. More recently, side-channel attacks ex-
ploiting speculative and out-of-order execution have been

1270 28th USENIX Security Symposium USENIX Association

shown on SGX as well [10, 32]. Similar to SGX, SEV
is not designed to thwart side-channel attacks. Therefore,
we expect similar attacks can be carried out on AMD’s
SEV as well. Because the attacks demonstrated in this pa-
per already completely breaks the confidentiality of SEV-
protected VMs, there is no need to rely on side channels to
extract secrets. However, in some of the attacks we demon-
strate, side channels do facilitate the attacks. We leave the
discussion on side-channel surface of SEV to future work.

• Memory hijacking attacks. SGX does not guard memory
safety inside the enclaves. Studies [7, 21] have shown
that attackers could exploit vulnerabilities in enclave pro-
grams and perform return-oriented programming (ROP)
attacks [29]. Randomization-based security defenses have
been proposed to mitigate ROP attacks [28]. However,
as pointed out by Biondo et al. [7], SGX runtimes inher-
ently contains memory regions that are hard to randomize,
and thus completely eliminating the threats of memory
hijacking attacks requires eradicating vulnerabilities from
the enclave code. As neither SGX nor SEV is designed
to provide memory safety, memory hijacking attacks are
feasible on SEV as well. We will not further discuss these
attacks on SEV in this paper.

AMD SEV is also vulnerable to these attacks. In this paper,
we have explored a fine-grained page-fault side channel
to locate the memory buffers used in the I/O operations.
We leave a comprehensive study of SEV side-channel and
memory-hijacking attacks to future work.

7 Conclusion

In this paper, we have reported our study of the insecurity of
SEV from the perspective of the unprotected I/O operations in
SEV-enabled VMs. The results of our study are two fold: First,
I/O operations from SEV guests are not secure; second, I/O
operations can be used by the adversary to construct memory
encryption and decryption oracles. The concrete attacks have
been demonstrated in the paper, along with discussion of
potential solutions to the underlying problems.

Acknowledgments. We would like to thank our shepherd
Dave Tan and also the anonymous reviewers for the helpful
comments. The work was supported in part by the NSF grants
1750809, 1718084, 1834213, and 1834216, and research gifts
from Intel and DFINITY foundation to Yinqian Zhang. Yan
Solihin is supported in part by UCF.

References

[1] AMD. AMD-V nested paging. http:
//developer.amd.com/wordpress/media/2012/
10/NPT-WP-1%201-final-TM.pdf, 2008.

[2] AMD. Amd64 architecture programmer’s manual vol-
ume 2: System programming, 2017.

[3] AMD. Secure encrypted virtualization api version 0.17,
2018.

[4] AMD. Solving the cloud trust problem with WinMagic
and AMD EPYC hardware memory encryption. White
paper, 2018.

[5] Amazon AWS. Optimizing latency and bandwidth for
AWS traffic, 2016.

[6] Michael Becher, Maximillian Dornseif, and Christian N.
Klein. FireWire: all your memory are belong to us. In
CanSecWest, 2005.

[7] Andrea Biondo, Mauro Conti, Lucas Davi, Tommaso
Frassetto, and Ahmad-Reza Sadeghi. The guard’s
dilemma: Efficient code-reuse attacks against intel SGX.
In 27th USENIX Security Symposium, pages 1213–1227.
USENIX Association, 2018.

[8] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko,
Kari Kostiainen, Srdjan Capkun, and Ahmad-Reza
Sadeghi. Software grand exposure: SGX cache attacks
are practical. In 11th USENIX Workshop on Offensive
Technologies, 2017.

[9] Robert Buhren, Shay Gueron, Jan Nordholz, Jean-Pierre
Seifert, and Julian Vetter. Fault attacks on encrypted
general purpose compute platforms. In 7th ACM on Con-
ference on Data and Application Security and Privacy.
ACM, 2017.

[10] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian
Zhang, Zhiqiang Lin, and Ten H. Lai. Sgxpectre attacks:
Stealing intel secrets from sgx enclaves via speculative
execution. In 4th IEEE European Symposium on Secu-
rity and Privacy. IEEE, 2019.

[11] CTS. Severe security advisory on AMD pro-
cessors. https://safefirmware.com/amdflaws_
whitepaper.pdf, 2017.

[12] Zhao-Hui Du, Zhiwei Ying, Zhenke Ma, Yufei Mai,
Phoebe Wang, Jesse Liu, and Jesse Fang. Secure
encrypted virtualization is unsecure. arXiv preprint
arXiv:1712.05090, 2017.

[13] Fujian Chuang YI Jia He Digital Inc. Anjian v1.1.0.
www.anjian.com, 2019.

[14] Blaise Gassend, G. Edward Suh, Dwaine Clarke, Marten
van Dijk, and Srinivas Devadas. Caches and hash trees
for efficient memory integrity verification. In 9th Inter-
national Symposium on High-Performance Computer
Architecture, 2003.

USENIX Association 28th USENIX Security Symposium 1271

[15] Johannes Götzfried, Moritz Eckert, Sebastian Schinzel,
and Tilo Müller. Cache attacks on intel sgx. In EU-
ROSEC, 2017.

[16] Marcus Hähnel, Weidong Cui, and Marcus Peinado.
High-resolution side channels for untrusted operating
systems. In USENIX Annual Technical Conference,
2017.

[17] Felicitas Hetzelt and Robert Buhren. Security analy-
sis of encrypted virtual machines. In ACM SIGPLAN
Notices. ACM, 2017.

[18] Intel. Intel architecture: Memory encryption technolo-
gies specification, 2017.

[19] David Kaplan. Protecting VM register state with SEV-
ES. White paper, 2017.

[20] David Kaplan, Jeremy Powell, and Tom Woller. AMD
memory encryption. White paper, 2016.

[21] Jae-Hyuk Lee, Jin Soo Jang, Yeongjin Jang, Nohyun
Kwak, Yeseul Choi, Changho Choi, Taesoo Kim, Mar-
cus Peinado, and Brent ByungHoon Kang. Hacking in
darkness: Return-oriented programming against secure
enclaves. In 26th USENIX Security Symposium, 2017.

[22] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim,
Hyesoon Kim, and Marcus Peinado. Inferring fine-
grained control flow inside SGX enclaves with branch
shadowing. In 26th USENIX Security Symposium, 2017.

[23] Saeid Mofrad, Fengwei Zhang, Shiyong Lu, and Wei-
dong Shi. A comparison study of intel SGX and AMD
memory encryption technology. In 7th International
Workshop on Hardware and Architectural Support for
Security and Privacy. ACM, 2018.

[24] Mathias Morbitzer, Manuel Huber, and Julian Horsch.
Extracting secrets from encrypted virtual machines. In
9th ACM Conference on Data and Application Security
and Privacy. ACM, 2019.

[25] Mathias Morbitzer, Manuel Huber, Julian Horsch, and
Sascha Wessel. SEVered: Subverting AMD’s virtual
machine encryption. In 11th European Workshop on
Systems Security. ACM, 2018.

[26] Brian Rogers, Siddhartha Chhabra, Milos Prvulovic, and
Yan Solihin. Using address independent seed encryption
and bonsai Merkle trees to make secure processors os-
and performance-friendly. In 40th Annual IEEE/ACM
International Symposium on Microarchitecture, 2007.

[27] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clé-
mentine Maurice, and Stefan Mangard. Malware
Guard Extension: Using SGX to Conceal Cache Attacks.
Springer International Publishing, 2017.

[28] Jaebaek Seo, Byoungyoung Lee, Seong Min Kim, Ming-
Wei Shih, Insik Shin, Dongsu Han, and Taesoo Kim.
Sgx-shield: Enabling address space layout randomiza-
tion for SGX programs. In 24th Annual Network and
Distributed System Security Symposium, 2017.

[29] Hovav Shacham. The geometry of innocent flesh on
the bone: Return-into-libc without function calls (on
the x86). In 14th ACM Conference on Computer and
Communications Security. ACM, 2007.

[30] Shweta Shinde, Zheng Leong Chua, Viswesh Narayanan,
and Prateek Saxena. Preventing page faults from telling
your secrets. In 11th ACM on Asia Conference on Com-
puter and Communications Security, 2016.

[31] Dawn Xiaodong Song, David Wagner, and Xuqing Tian.
Timing analysis of keystrokes and timing attacks on ssh.
In USENIX Security Symposium, 2001.

[32] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel
Genkin, Baris Kasikci, Frank Piessens, Mark Silberstein,
Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx.
Foreshadow: Extracting the keys to the intel SGX king-
dom with transient out-of-order execution. In 27th
USENIX Security Symposium, 2018.

[33] Jo Van Bulck, Nico Weichbrodt, Rüdiger Kapitza, Frank
Piessens, and Raoul Strackx. Telling your secrets with-
out page faults: Stealthy page table-based attacks on
enclaved execution. In 26th USENIX Security Sympo-
sium. USENIX Association, 2017.

[34] Wenhao Wang, Guoxing Chen, Xiaorui Pan, Yinqian
Zhang, XiaoFeng Wang, Vincent Bindschaedler, Haixu
Tang, and Carl A Gunter. Leaky cauldron on the dark
land: Understanding memory side-channel hazards in
sgx. In ACM SIGSAC Conference on Computer and
Communications Security, 2017.

[35] Yuming Wu, Yutao Liu, Ruifeng Liu, Haibo Chen, Binyu
Zang, and Haibing Guan. Comprehensive VM pro-
tection against untrusted hypervisor through retrofitted
AMD memory encryption. In International Symposium
on High Performance Computer Architecture, 2018.

[36] Yuanzhong Xu, Weidong Cui, and Marcus Peinado.
Controlled-channel attacks: Deterministic side channels
for untrusted operating systems. In IEEE Symposium
on Security and Privacy. IEEE, 2015.

[37] Chenyu Yan, B. Rogers, D. Englender, D. Solihin, and
M. Prvulovic. Improving cost, performance, and security
of memory encryption and authentication. In 33rd Inter-

national Symposium on Computer Architecture, 2006.

1272 28th USENIX Security Symposium USENIX Association

