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This white paper is a technical explanation of what the discussed technology has been designed to accomplish. The 

actual technology or feature(s) in the resultant products may differ or may not meet these aspirations. Each 

description of the technology must be interpreted as a goal that AMD strived to achieve and not interpreted to 

mean that any such performance is guaranteed to be fully achieved.  Any computer system has risks of security 

vulnerabilities that cannot be completely prevented or mitigated.   
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Introduction 
 In 2016, AMD introduced Secure Encrypted Virtualization (SEV), the first x86 technology 

designed to isolate virtual machines (VMs) from the hypervisor.  While hypervisors have traditionally 

been trusted components in the virtualization security model, many markets can benefit from a 

different VM trust model.  In the cloud for instance, customers may want to secure their VM-based 

workloads from the cloud administrator to keep their data confidential and minimize their exposure to 

bugs in the cloud provider’s infrastructure.  This leads to a desire to isolate VMs at a hardware level 

from the hypervisor and other code that may happen to coexist on the physical server. 

 AMD began tackling this challenge through the use of main memory encryption in SEV.  With 

this technology, individual VMs could be assigned a unique AES encryption key that is used to 

automatically encrypt their in-use data.  When a component such as the hypervisor attempts to read 

memory inside a guest, it is only able to see the encrypted bytes. 

 In 2017, AMD introduced the SEV-ES (Encrypted State) feature which added additional 

protection for CPU register state.  In SEV-ES, the VM register state is encrypted on each hypervisor 

transition so that the hypervisor cannot see the data actively being used by the VM.  Together with SEV, 

SEV-ES can reduce the attack surface of a VM by helping protect the confidentiality of data in memory. 

 This white paper introduces the next generation of SEV called SEV-SNP (Secure Nested Paging).  

SEV-SNP builds upon existing SEV and SEV-ES functionality while adding new hardware-based security 

protections.  SEV-SNP adds strong memory integrity protection to help prevent malicious hypervisor-

based attacks like data replay, memory re-mapping, and more in order to create an isolated execution 

environment.  Also, SEV-SNP introduces several additional optional security enhancements designed to 

support additional VM use models, offer stronger protection around interrupt behavior, and offer 

increased protection against recently disclosed side channel attacks. 

 This white paper refers to SEV, SEV-ES, and SEV-SNP collectively as AMD SEV technologies. 

The Case for Integrity 
 AES encryption, as used with AMD SEV technologies, provides increased confidentiality 

protection of memory.  An attacker without knowledge of the encryption key cannot decipher VM data 

that is stored in DRAM.  The SEV memory encryption key itself is generated from a hardware random 

number generator and is stored in dedicated hardware registers where software cannot directly read it.  

Additionally, the hardware is designed so that identical plaintext at different memory locations will 

encrypt differently. 

Despite the encryption, a motivated attacker may attempt to change values in memory, even 

without knowing the encryption key.  These types of attacks are referred to as integrity attacks because 

the values in memory are not the same as what the VM intended.  While an attacker cannot easily put 

known data into a VM’s memory without knowledge of the encryption key, they may be able to corrupt 

memory so that the VM sees random values or conduct replay attacks.  In a replay attack, an attacker 

captures ciphertext at one point in time and later replaces memory with the earlier captured data.  This 

type of attack is more effective if the attacker knew what the original data was. 
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 Integrity attacks by themselves do not directly compromise a VM.  Software inside the VM must 

utilize the incorrect data, leading to a compromise or information disclosure.  Whether such an attack is 

successful or not is dependent on the software inside the VM and how it behaves when encountering 

this compromised data.  As the software in the VM is generally not aware if its memory integrity has 

been compromised, its behavior in this situation can be challenging to predict. 

 SEV-SNP is designed to prevent software-based integrity attacks and reduce risk associated with 

compromised memory integrity.  The basic principle of SEV-SNP integrity is that if a VM is able to read 

a private (encrypted) page of memory, it must always read the value it last wrote.  This means that if 

the VM wrote a value A to memory location X, whenever it later reads X it must either see the value A or 

it must get an exception indicating the memory could not be read.  SEV-SNP is designed so that the VM 

should not be able to see a different value from memory location X. 

 To support standard VM tasks, this guarantee must hold regardless of what happens to memory 

in between the read and the last write.  If that memory page is swapped to a disk, or even if the entire 

VM is migrated to a new host, the integrity guarantee must still hold.  Enforcing this integrity guarantee 

requires a combination of new CPU hardware and firmware discussed later in this white paper.  

 In typical use cases, VMs must both execute their own tasks and communicate with outside 

entities via I/O.  This may include communication over a network link, with a storage server, or with 

other components.  In the SEV architecture, this communication is done using shared (unencrypted) 

memory.  Any outgoing data that a VM desires to make available is placed into a shared page of 

memory, and any incoming data must similarly be placed into a shared page.  Because shared memory is 

not encrypted with the VM’s specific key, appropriate software encryption protocols like HTTPS should 

be used for security of I/O traffic. 

 AMD SEV VMs control 

whether a memory page is 

private or shared using the 

enCrypted bit (C-bit) in the 

guest page tables.  The 

location of the C-bit is 

implementation defined and 

may be the top physical 

address bit as shown in 

Figure 1.  Shared 

(unencrypted) memory is 

marked C=0 by the VM, 

indicating it does not have to 

be encrypted with the VM’s 

memory encryption key.  

Private (encrypted) memory 

pages are for the exclusive use of that VM and are marked as C=1.  In a typical VM, most pages are 

marked private, and only the select pages needed for outside communication are marked shared.  As 

with the SEV confidentiality guarantees, the SEV-SNP integrity guarantees only apply to private guest 

pages. 

Virtual Address

Physical Address0

Memory

Max 0

Unencrypted

Virtual Address

Physical Address1

Memory

Max 0

Encrypted

C-bit C-bit

AES 
Encryption

FIGURE 1: ENCRYPTION CONTROL 
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Threat Model Details 
 As with the previous SEV and SEV-ES features, under SEV-SNP the AMD System-On-Chip (SOC) 

hardware, the AMD Secure Processor (AMD-SP), and the VM itself are all treated as fully trusted.  The 

VM is responsible for protecting itself and its interfaces, and it should follow standard best practices for 

protecting any I/O data it uses such as network traffic, hard disk data, etc.  To this end, AMD highly 

recommends using a Full Disk Encryption (FDE) solution with protected VMs since all SEV technologies 

only protect data in-use.  FDE protects data-at-rest and many popular commercial solutions exist.  

 Under SEV-SNP, all other CPU software components and PCI devices are treated as fully 

untrusted as shown in Figure 2.  This includes the BIOS on the host system, the hypervisor, device 

drivers, other VMs, etc.  Fully untrusted means these components are assumed to be malicious, 

potentially conspiring with other untrusted components in an effort to compromise the security 

guarantees of an SEV-SNP VM. 

AMD Hardware and Firmware

CPU BIOS

Hypervisor

Device Drivers

External PCI Devices 
(e.g., NIC, HDD)

Cloud Management Software

SNP VM
Legacy 

(unencrypted) 
VMs

Legacy 
(unencrypted) 

VMs

Legacy 
(unencrypted) 

VMs

Legacy 
(unencrypted) 

VMs

Legacy 
(unencrypted) 

VMs
Other SNP VMs

= Untrusted

= Trusted

 

FIGURE 2: SEV-SNP THREAT MODEL 

 The SEV-SNP threat model includes features that are designed to protect against additional 

threats than previous AMD SEV technologies.  SEV and SEV-ES use the threat model of a “benign but 

vulnerable” hypervisor.  In this threat model, the hypervisor is not believed to be 100% secure, but it is 

trusted to act with benign intent.  Meaning that while the hypervisor was not actively trying to 

compromise the SEV VMs underneath it, it could itself have exploitable vulnerabilities.  By either 

blocking or making certain attacks more difficult, SEV and SEV-ES technologies can help limit the 

potential exposure of certain classes of hypervisor bugs or raise the difficulty of exploitation 

significantly.  SEV-SNP addresses additional attack vectors and potential threats to VM security.  The 

threats which are and are not addressed by various SEV technologies are summarized in Table 1. 

Confidentiality: As noted, confidentiality threats are handled through the hardware-based 

memory encryption present in all current SEV technologies.  This prevents an untrusted component, 

such as the hypervisor or a DMA-capable device, from being able to directly read the plaintext inside a 
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VM (except of course in cases where the VM has opted to allow untrusted access to a page).  The SEV-ES 

technology added confidentiality protection for VM register state, encrypting this state when the VM 

exits back to the hypervisor.  This protection exists in SEV-SNP as well. 

Integrity: SEV-SNP technology is designed to protect against integrity attacks, which include 

data replay, corruption, re-mapping, and aliasing based attacks.  The guarantee that a VM always sees 

the data it last wrote implies that all these attack vectors must be prevented. 

Availability: There are two aspects of availability with any virtualization platform.  The first is 

ensuring that the hypervisor retains control of the system, and the guest VM is not able to deny the 

hypervisor from running or otherwise render the physical machine unusable.  All SEV technologies 

support this level of availability and guarantee that the hypervisor can always regain control when it 

desires (e.g., via a physical timer interrupt) or terminate a guest at any time without the consent of that 

VM.  The second aspect of availability is whether the guest enjoys any guarantees of availability such as 

a minimum run-time.  This is not part of any of the SEV technology threat models as a malicious 

hypervisor can always choose never to run some or all of a guest VM. 

Physical Access Attacks: While certain physical attacks such as DRAM cold boot attacks (where 

DRAM chips are analyzed off-line) can be blocked by these technologies, on-line DRAM integrity attacks, 

such as attacking the DDR bus while the VM is actively running, are out of scope.   These attacks are very 

complex and require a significant level of local access and resources to perform. 

Miscellaneous: There are several other types of potential attacks against secure VMs, some of 

which are in-scope in this threat model.  For instance, SEV-SNP includes features to help prevent Trusted 

Computing Base (TCB) rollback attacks.  As discussed later, this enables a cryptographic means to verify 

that the AMD-SP firmware and other trusted components in the system meet the policy of the VM.   

Additionally, SEV-SNP optionally supports the ability to restrict how interrupts and exceptions 

can be injected into a VM.  It can also support Branch Target Buffer (BTB) protection against certain 

types of side channel attacks.  Both protections are discussed later in this white paper. 

 Lastly, there are certain classes of attacks that are not in scope for any of these three features.  

Architectural side channel attacks on CPU data structures are not specifically prevented by any 

hardware means.  As with standard software security practices, code which is sensitive to such side 

channel attacks (e.g., cryptographic libraries) should be written in a way which helps prevent such 

attacks. Fingerprinting attack protection is also not supported in the current generation of these 

technologies.  Fingerprinting attacks attempt to determine what code the VM is running by monitoring 

its access patterns, performance counter information, etc.  While fingerprinting can sometimes provide 

information about the code being run inside a VM, typically the most sensitive information is the data 

itself (e.g., data in the database), not the code being run (e.g., which version of the database software is 

being used).  The current set of SEV technologies therefore focuses primarily on protecting the sensitive 

VM data contents.  Additional protection against certain fingerprinting attacks may be offered in future 

SEV technologies.  
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= Mitigated      = Optionally Mitigated     = Not Mitigated 
SEV SEV-ES SEV-SNP 

Potential Threats  

Confidentiality 

VM Memory 
   Example attack: Hypervisor reads private VM memory    

VM Register State 
   Example attack: Read VM register state after VMEXIT    

DMA Protection 
   Example attack: Device attempts to read VM memory    

Integrity    

Replay Protection 
   Example attack: Replace VM memory with an old copy    

Data Corruption 
   Example attack: Replace VM memory with junk data    

Memory Aliasing 
   Example attack: Map two guest pages to same DRAM page    

Memory Re-Mapping 
   Example attack: Switch DRAM page mapped to a guest page    

Availability    

Denial of Service on Hypervisor 
   Example attack: Malicious guest refuses to yield/exit    

Denial of Service on Guest 
   Example attack: Malicious hypervisor refuses to run guest    

Physical Access Attacks    

Offline DRAM analysis 
   Example attack: Cold boot    

Active DRAM corruption 
   Example attack: Manipulate DDR bus while VM is running    

Misc.    

TCB Rollback 
   Example attack: Revert AMD-SP firmware to old version    

Malicious Interrupt/Exception Injection 
   Example attack: Inject interrupt while RFLAGS.IF=0    

Indirect Branch Predictor Poisoning 
   Example attack: Poison BTB from hypervisor    

Secure Hardware Debug Registers 
   Example attack: Change breakpoints during debug    

Trusted CPUID Information 
   Example attack: Hypervisors lies about platform capabilities    

Architectural Side Channels 
   Example attack: PRIME+PROBE to track VM accesses    

Page-level Side Channels 
   Example attack: Track VM access patterns through page tables    

Performance Counter Tracking 
   Example attack: Fingerprint VM apps by performance data    

TABLE 1: THREAT MODEL  



8 

THREAT DESIRED SECURITY PROPERTY SEV-SNP ENFORCEMENT 
MECHANISM 

REPLAY PROTECTION Only the owner of a memory page can write 
that page 

Reverse Map Table (RMP) 

DATA CORRUPTION Only the owner of a memory page can write 
that page 

Reverse Map Table (RMP) 

MEMORY ALIASING Every physical memory page can map only to a 
single guest page at one time  

Reverse Map Table (RMP) 

MEMORY RE-MAPPING Every guest page can map only to a single 
physical memory page at one time 

Page Validation 

TABLE 2: INTEGRITY THREATS 

Integrity Threats 
 The previous section highlighted four unique types of integrity threats: Replay Protection, Data 

Corruption, Memory Aliasing, and Memory Re-Mapping.  Protecting against these threats requires the 

enforcement of different security properties as shown in Table 2.  In the case of Replay Protection and 

Data Corruption based attacks, these attacks rely on untrusted code being able to write to the memory 

of a protected VM.  SEV-SNP addresses this by enforcing that only the owner of a memory page (e.g., 

the SEV-SNP VM to which the page was assigned) may write to that page.  This enforcement is done 

using the Reverse Map Table (RMP) mechanism described in the following section. 

 Memory Aliasing attacks involve the hypervisor maliciously simultaneously mapping two 

different guest pages to the same physical memory page.  A guest naturally expects that different pages 

in its guest physical address space map to different memory so any aliasing could lead to unintentional 

data corruption.  Addressing this threat requires ensuring that every physical page of memory can only 

be mapped to one guest page at a time.  Again, the RMP structure is used to enforce this property. 

 The final integrity threat, Memory Re-Mapping, involves the hypervisor maliciously re-mapping 

a single guest page to multiple different physical memory pages.  In this threat, the guest might see an 

inconsistent view of memory where only a subset of data it wrote appears in memory.  Addressing this 

threat requires ensuring that every guest page only maps to a one page of physical memory at a time, 

and that this mapping cannot be changed except by trusted entities like the AMD-SP.  SEV-SNP uses a 

mechanism called Page Validation to address this threat.  Page Validation relies on a combination of the 

new RMP mechanism with new VM code to manage the injective relationship between guest memory 

and system memory. 

Reverse Map Table 
 As mentioned, many of the integrity guarantees of SEV-SNP are enforced through a new 

structure called the Reverse Map Table (RMP).  The RMP is a single data structure shared across the 

system that contains one entry for every 4k page of DRAM that may be used by VMs.  The goal of the 

RMP is simple: it tracks the owner for each page of memory.  Pages of memory can be owned by the 

hypervisor, owned by a specific VM, or owned by the AMD-SP.  Access to memory is controlled so only 

the owner of that page can write it.  The RMP is used in conjunction with standard x86 page tables to 

enforce memory restrictions and page access rights. 
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 The RMP is indexed by system physical address and is checked at the end of CPU and IOMMU 

table-walks.  For example, in native (non-VM) mode, virtual addresses are translated into physical 

addresses using the standard x86 page tables.  After that translation, the final physical address is used to 

index the RMP.  The RMP entry is read out and checked.  If the RMP entry indicates that the page is a 

hypervisor-owned page, then the checks pass and a new TLB entry is created.  If the RMP entry indicates 

that the page is not a hypervisor-owned page though, the table-walk faults (#PF) and the access is 

denied. 

 When running in an 

SEV-SNP VM, the RMP 

check is slightly more 

complex.  As with native 

mode, the virtual address 

is first translated into a 

system physical address.  

In this case, AMD-V 2-level 

paging1 is used to 

translate a Guest Virtual 

Address (GVA) to a Guest 

Physical Address (GPA) 

and finally to a System 

Physical Address (SPA).  The 

SPA is used to index the RMP and the entry is checked.  This RMP entry should contain information 

indicating that the page is a guest-owned page, assigned to this specific guest, and mapped at this 

specific GPA.  That is, the RMP entry contains the GPA where it should be mapped, and the hardware 

verifies that this GPA matches the GPA of the current table-walk.  If this or any other check fails, an 

exception is generated, and the access is denied. 

 Not every memory access requires an RMP check.  In particular, read accesses from the 

hypervisor (or non-SEV-SNP guests) do not require RMP checks because data confidentiality is already 

protected via the AES memory encryption.  Otherwise, all write accesses in any mode require an RMP 

check, and both read and write accesses to private memory pages inside an SEV-SNP require RMP 

checks.  Write accesses include both standard memory writes as well as A/D-bit updates as part of the 

page table walk.  Like with standard x86 paging, the results of the RMP check are cached in the CPU TLB 

and related structures.   

 Because the RMP is used to enforce access control to memory, the table itself is not directly 

writeable by software.  New CPU instructions exist to enable manipulation of RMP entries, allowing the 

hypervisor to assign pages to specific guests, take pages back, etc.  When required, hardware 

automatically performs TLB invalidations to ensure that all processors in the system see the updated 

RMP entry information. 

 
1 Also known as Nested Paging, as described in section 15.25 of the AMD64 Programmer’s Manual Volume 2. 

FIGURE 3: RMP CHECKS 

https://www.amd.com/system/files/TechDocs/24593.pdf
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Page Validation 
 As mentioned earlier, each RMP entry contains the GPA at which a particular page of DRAM 

should be mapped.  This ensures by construction that every SPA can only be mapped to a single GPA at 

one time.  The inverse, a single GPA mapping to more than one SPA, also cannot be allowed to meet the 

SEV-SNP integrity guarantee.  While the nested page tables ensure that each GPA can only map to one 

SPA, the hypervisor may change these tables at any time.  SEV-SNP integrity requires that manipulating 

the tables in this way cannot break the desired integrity and this is addressed through the concept of 

Validation. 

 Inside each RMP entry is a Validated bit, and this bit is automatically cleared to 0 by CPU 

hardware when a new RMP entry is created for a guest.  Pages that are assigned to guests but have the 

Validated bit clear are not useable by the hypervisor or as a private guest page since the page is not 

validated.  The guest can only use the page after it sets the Validated bit through a new CPU instruction, 

PVALIDATE.  Only the guest is able to use PVALIDATE, and each guest VM can only validate its own 

memory. 

 Adding a new page to a guest VM therefore requires a 2-step process as shown in Figure 4.  

First, the hypervisor assigns the page to the guest using the new RMPUPDATE instruction.  This 

transitions the page into the Guest-Invalid state.  Second, the guest validates the page using the new 

PVALIDATE instruction to transition the 

page to the Guest-Valid state, from where 

it can be used. 

 In order to meet the desired 

integrity of SEV-SNP, the guest VM should 

never validate memory corresponding to 

the same GPA more than once.  This can 

be accomplished simply by the guest VM 

validating all of its memory at boot and 

refusing to ever validate additional 

memory (other than as part of hot-plug 

events).  Alternatively, the guest VM can 

track memory locations it has validated and 

refuse to ever validate the same one twice. 

 Assuming the guest VM correctly 

validates its memory, this guarantees the 

injective mapping between GPAs and SPAs.  

The guest will validate each GPA only once, and the RMP table, by construction, ensures that each SPA 

can only map to one GPA. 

Hypervisor Page

• R/W by Hypervisor

• Not useable by guest with 
C=1

Guest-Invalid

• RO (encrypted) by Hypervisor

• Not useable by guest with 
C=1

Guest-Valid

• RO (encrypted) by Hypervisor

• R/W by guest with C=1

FIGURE 4: BASIC PAGE STATES 
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 When done correctly, page validation can block re-mapping attacks like the one shown in Figure 

5.  In this example, GPA A is initially mapped to SPA X.  The guest does a PVALIDATE to validate this 

translation, which causes the Validated bit to be set in the RMP entry corresponding to SPA X.  If the 

hypervisor then maliciously attempts to remap A to a different SPA Y, it will start by creating an RMP 

entry for SPA Y attempting to map the same GPA A using the RMPUPDATE instruction.  The hypervisor 

then maliciously modifies the nested page table (NPT) to re-map GPA A to Y.  When the guest accesses Y 

however it will get a #VC (VMM Communication) exception.  This exception occurs because the 

Validated bit in the RMP entry corresponding to SPA Y was clear (as when RMPUPDATE was executed to 

assign a new page to the guest, it initially cleared the Validated bit).  As the guest knows it had already 

validated GPA A, it knows it should not be receiving a validation error and therefore it is under attack 

and the hypervisor is not behaving correctly.  In response, the guest can terminate or take other steps to 

protect itself. 

Page States 
 As shown, the RMP in SEV-SNP tracks the state of each page of memory.  These states dictate 

what the memory can be used for, who is allowed to read/write it, and to what states the page can later 

be transitioned.  For instance, pages in the Hypervisor state can be read/written by the hypervisor, or by 

SEV-SNP VMs accessing the memory with C=0 (shared pages).  Pages in the Guest-Valid state by contrast 

can be read/written by SEV-SNP VMs but cannot be written by the hypervisor. 

 The diagram in Figure 4 describes three of the basic page states: the Hypervisor, Guest-Valid, 

and Guest-Invalid states.  In total, there are eight main page states defined by the SEV-SNP architecture 

as listed in Table 3.  Page state transitions are shown in Figure 6 and can occur via the new CPU 

RMPUPDATE instruction (red), the new PVALIDATE instruction (blue), or through the VM management 

API in the AMD-SP (green). 

As with previous SEV technologies, SEV-SNP implements a VM management API in the AMD-SP.  

The hypervisor calls this interface to assist with VM lifecycle tasks and page management.  For security 

reasons, any pages the AMD-SP will manipulate must be placed into special states, called Immutable 

states, prior to issuing the necessary API call.  Pages in the Immutable states cannot be written by any 

software on the CPU (hypervisor or guest) and cannot have their RMP entry modified by anyone other 

A 

X 

Y 

Guest Physical 
Address Space 

System Physical 
Address Space 

RMP 

1. Guest does 
PVALIDATE. 

2. Hardware sets 
RMP[X].Validated.  

3. Hypervisor allocates Y at 
same GPA.  RMPUPDATE 
sets RMP[Y].Validated=0. 

4. Hypervisor 
changes mapping 
in NPT. 

5. Hardware sees 
RMP[Y].Validated=0 
=> #VC exception. 

FIGURE 5: PAGE RE-MAPPING ATTACK 
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than the AMD-SP.  When the AMD-SP 

is finished processing a page in one of 

these Immutable states, it may 

transition it to a different state as 

defined by the specific API call. 

For example, ‘Metadata’ pages 

are a type of Immutable pages.  These 

pages are only writeable by the AMD-

SP and are used to hold metadata 

entries associated with guest pages 

that have been swapped to disk.  

Because of the SEV-SNP integrity 

guarantees, any pages that are 

swapped to disk must have their 

integrity confirmed before they can be 

swapped back into memory.  When a 

page is swapped to disk, the AMD-SP 

creates a metadata entry containing an 

authentication tag (from AES-GCM), as 

well as data from the page’s RMP entry, 

such as the GPA where it was located.  As the Metadata page itself is not writeable by the hypervisor, 

the integrity of this information is guaranteed.  When a page is swapped back into memory, the AMD-SP 

verifies the contents were unchanged and ensures the page enters the guest address space at the same 

location as it was before.  Metadata pages themselves can also be swapped to disk in a similar fashion, 

allowing for the entire guest to be saved to disk if desired. 

 

STATE DESCRIPTION NOTES 

HYPERVISOR Default state for otherwise unassigned memory Used for hypervisor memory, non-SNP-VM 
memory, and shared (C=0) memory 

GUEST-
INVALID 

Page is assigned to a guest but not ready to be 
used 

Not useable by SEV-SNP VMs until 
validation has occurred  

GUEST-VALID Page is assigned to a guest and useable Page may be used as private (C=1) 
memory by the assigned SEV-SNP VM 

PRE-GUEST Page is Immutable and not validated Used when initially launching SEV-SNP 
VMs 

PRE-SWAP Page is Immutable and validated Used when swapping guest pages to disk 
FIRMWARE Page is Immutable and reserved for AMD-SP use Typically used as transitory state until 

AMD-SP has configured the page 
METADATA Page is Immutable and used for metadata Metadata is used when swapping guest 

pages to disk 
CONTEXT Page is Immutable and used for context 

information 
Context pages are used by the AMD-SP to 
identify individual VMs and hold per-VM 
data 

TABLE 3: SEV-SNP PAGE STATES 

FIGURE 6: PAGE STATE TRANSITIONS 

Hypervisor

Pre-Guest

Guest-Valid

Guest-Invalid Pre-Swap

RMPUPDATE

PVALIDATE

AMD-SP API Call

Firmware
Metadata

Context
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Virtual Machine Privilege Levels 
 Virtual Machine Privilege Levels (VMPLs) are a new optional feature in the SEV-SNP architecture 

which allows a guest VM to divide its address space into four levels.  These can be used to provide 

hardware isolated abstraction layers within a VM for additional security controls, as well as assistance 

with managing communication with the hypervisor. 

These levels are hierarchical in nature where VMPL0 is the highest privilege and VMPL3 is the 

least privileged.  When this feature is enabled, every vCPU of a VM is assigned a VMPL.  The RMP entry 

for each page of private guest memory is also augmented with page access rights corresponding to each 

VMPL and are applied in addition to standard paging permissions.  Specifically, individual guest pages 

can be marked as readable, writeable, supervisor-mode executable, and user-mode executable.  By 

default, when a page is first validated by a guest, VMPL0 is granted full permissions to the page and all 

other VMPLs are granted no permissions.  The guest can choose to modify VMPL permissions via the 

new RMPADJUST instruction. 

 The RMPADJUST instruction allows a given VMPL to modify permissions for a less privileged 

VMPL.  For example, VMPL0 can grant read and write (but not execute) permissions on a page to 

VMPL1.  This is restricted so one level cannot grant more permissions than it currently has.  VMPLs are 

primarily used to set additional page permission checks and are otherwise orthogonal to other x86 

security features. 

The RMP page permission checks are performed at the time of the RMP lookup at the end of a 

table-walk.  Page permissions checks are restrictive in nature, so for a guest page to be writeable for 

instance, it must be marked writeable in the guest-managed page tables (corresponding to the active 

vCPU), the nested page tables (managed by the hypervisor), as well as the RMP table (managed by a 

higher privileged VMPL). 

VMPLs are in some ways like 

nested virtualization in that a guest 

may contain its own management layer 

running at high VMPL which controls 

permissions on its other pages.  This 

enables use cases such as the secure 

virtualization of a security enforcing 

hypervisor.  While on a bare-metal 

system, a standard hypervisor may be 

used to enforce that certain pages are 

read-only, not executable, etc., SEV-

SNP enables that same use model in a 

cloud environment.  In this case, 

VMPL0 inside the guest would enforce 

the required page permissions as the 

true hypervisor in the cloud is treated 

as untrusted.  

VM 
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FIGURE 7: VMPLS 
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VMPLs are useful in several additional scenarios as well as an abstraction layer.  For example, 

APIC emulation is a task traditionally handled by the hypervisor.  In SEV-SNP, certain VMs may desire a 

more restrictive environment where APIC emulation is moved inside the trust domain of the guest.  In 

this case, VMPL0 can be used to 

perform trusted APIC emulation 

while allowing the rest of the 

guest running in lower VMPLs, 

remaining unaware of the 

emulation. 

VMPL0 can also be used 

to act as an intermediary for guest 

to hypervisor communications.  

Previously, SEV and SEV-ES 

technologies have required an 

enlightened guest OS which is 

aware of these security features.  

The guest OS was expected to do 

things like set the C-bit in page 

tables, handle #VC exceptions (in 

SEV-ES), and more.  In the case of 

SEV-SNP, these tasks can be 

optionally delegated instead to 

VMPL0.   

In this use model, VMPL0 

can be used to configure which 

guest memory in another vCPU is 

private (C=1) versus shared (C=0) 

using a watermark called the 

Virtual Top of Memory (vTOM).  

Memory addresses below vTOM 

are automatically treated as 

private while memory above 

vTOM is treated as shared.  Using 

vTOM to separate memory in this 

way avoids the need to augment 

the standard x86 page tables with 

C-bit markings, simplifying guest 

OS software.  

Additionally, VMPL0 can 

be used to handle #VC events that 

occur in another vCPU.  An SEV-SNP VM 

can be configured so that when an intercepted instruction is executed in one vCPU (e.g., RDMSR), that 

vCPU exits and VMPL0 can be invoked.  VMPL0 can then view the intercepted information directly from 

Execute intercepted 
instruction 

(e.g., RDMSR)

Ask VMPL0 to 
handle #VC event

Determine required 
emulation for #VC 

event

Perform hypercall 
with required 
parameters

Return requested 
information to 

VMPL0

Emulate instruction 
and update VMPL3 

encrypted save 
state

Resume VMPL3

Continue execution

VMPL3 VMPL0 Hypervisor

FIGURE 8: VMPL0 #VC EMULATION 
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the encrypted save area of the original vCPU, perform any necessary hyper-calls, and emulate the 

instruction on behalf of the original vCPU as shown in Figure 8.  

While not as performant as a natively enlightened guest, this behavior can enable VMPL0 to 

serve as the glue logic for running unenlightened (legacy) guest VMs.  This has the potential to allow 

SEV-SNP to be used to secure older workloads that may not be easily upgrade-able to newer operating 

systems. 

Interrupt/Exception Protection 
 While almost all VM operating systems support interrupt and exception handling, some 

operating systems may have built-in assumptions about interrupt and exception behavior based on 

bare-metal hardware.  If those assumptions can be violated by a malicious hypervisor, it is possible this 

behavior may violate the assumptions of the design of the operating system.  For example, an operating 

system may not expect to take a low priority interrupt when their TPR is elevated or it may not expect to 

take a #UD exception after executing an ADD instruction. 

 To address these concerns, SEV-SNP adds two optional modes that VMs can choose to enable to 

support a more restrictive interface between the VM and hypervisor regarding interrupts and 

exceptions.  The first mode, called Restricted Injection, disables the virtual interrupt queuing and 

partially disables the interrupt injection interface.  In this mode, the hypervisor is only allowed to inject a 

single newly defined exception vector, #HV, to act as a doorbell.  Restricted Injection assumes that the 

VM and hypervisor will communicate events in a para-virtualized manner, such as an event queue in 

shared memory.  The #HV exception can be a signal to the guest to re-scan the event queue for new 

information. 

 A second mode, called Alternate Injection, allows for 

standard virtual interrupt queuing and injection interfaces, but 

these may only be controlled by the guest itself.  New fields are 

added to the encrypted save area (called the Virtual Machine 

Save Area or VMSA) which allow for interrupt queuing and event 

injection.  Being in the VMSA, these fields can only be 

manipulated by someone with access to the guest VMSA data, 

such as VMPL0.  In the Alternate Injection mode, all interrupt 

related security sensitive state (such as TPR) is saved to the VMSA 

so it cannot be manipulated by a malicious hypervisor.  

 Combined, these two modes enable VMPL0 to perform interrupt handling and APIC emulation.  

vCPUs that are used to run VMPL0 can be run with Restricted Injection enabled so they communicate 

with the hypervisor using a para-virtualized interface and the #HV exception.  vCPUs used to run other 

VMPLs (where presumably the main OS of the guest runs) can be run with Alternate Injection enabled.  

In this way, VMPL0 can inject events and virtual interrupts to the main OS when it is safe to do so.  From 

a software standpoint, the main OS can use a standard APIC or x2APIC interface and any APIC accesses it 

needs can be trapped and emulated in VMPL0. 
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Trusted Platform Information 
 Platform features and capabilities are traditionally discovered via the CPUID instruction.  

Hypervisors typically trap and emulate the CPUID instruction for a variety of reasons, including limiting 

the features a guest may use to make it easier to migrate.  In many cases, a malicious hypervisor can 

only cause denial-of-service on a guest by lying about CPUID features. 

 There are some cases however where incorrect CPUID information can potentially lead to a 

security issue.  For instance, a hypervisor which lies about the size of the x86 Extended Save Area (used 

with the XSAVE/XRSTOR CPU instructions) may cause a guest to allocate too small a memory region and 

have a buffer overflow when it executes the hardware XSAVE instruction.  While it is possible in many 

cases for guest VMs to attempt to validate the CPUID it receives (e.g., by checking that the reported 

XSAVE buffer size is correct), this may be challenging, especially during the boot process. 

 To simplify the checks that a guest must do, SEV-SNP supports an optional capability to filter 

CPUID results through the AMD-SP.  The AMD-SP will verify that the CPUID results that the hypervisor is 

reporting are no greater than the capabilities of the platform and that security sensitive information, 

such as the x86 Extended Save Area size, is correct.   

CPUID filtering may be done either on-the-fly, or as part of guest boot.  For on-the-fly filtering, 

after receiving CPUID information the guest may ask the AMD-SP to verify that security sensitive 

information is correct.  Alternatively, during VM launch a special ‘CPUID page’ can be created which 

contains pre-vetted CPUID information from the AMD-SP allowing the guest access to trusted CPUID 

information starting from early boot.  In addition to the security benefits, this special page allows for 

faster access to CPUID information which can speed up the VM boot process. 

TCB Versioning 
 In the SEV-SNP architecture, there are several upgradeable firmware components, including the 

AMD-SP API, the CPU microcode patch, and more.  As these firmware components are considered 

trusted in the SEV-SNP threat model, they form the TCB of the architecture.  As bugs are fixed or 

features are upgraded, new versions of these components may be released.  If a security bug were to be 

found in one of these components, a guest owner may require a guarantee that their VM is running 

under patched firmware and not a vulnerable version. 

 Prior SEV and SEV-ES features have relied on a self-reported AMD-SP version number to 

implement TCB versioning.  A guest owner could specify a minimum version of AMD-SP firmware and 

the VM could not be loaded on an older one.  In SEV-SNP, this check has been enhanced to be 

cryptographically strong.  In SEV-SNP, the version numbers of all TCB components are combined with a 

fused secret called the Chip Endorsement Key to create a Versioned Chip Endorsement Key (VCEK).  The 

VCEK is a private ECDSA key which is unique to each AMD chip, running a specific TCB version.  The 

construction of the VCEK uses cryptographic hash functions so that a given TCB version cannot fake 

being a newer TCB.  The VCEK is used in several ways, including for signing attestation reports. 
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VM Launch & Attestation 
 As with previous SEV and SEV-ES architectures, SEV-SNP VMs start from an initial unencrypted 

image.  This initial image is expected to contain things like the guest VM boot code, but as it starts 

unencrypted, it should not contain any secrets.  During the launch process, the hypervisor asks the 

AMD-SP to install this initial set of pages in the guest.  The AMD-SP cryptographically measures the 

contents of these pages into a launch digest.  In the SEV-SNP architecture, the AMD-SP also measures 

the metadata associated with these pages, namely the GPA where the pages are being placed and the 

type of page they are.  This ensures that the launch digest captures the layout of initial guest memory, 

as well as its contents. 

 In SEV-SNP, at the end of the launch process, the guest owner can supply a signed Identity Block 

(IDB) to associate with the VM.  The IDB contains fields that allow the guest owner to uniquely identify 

the VM and contains the expected launch digest.  The IDB can only be associated with VMs which match 

the expected launch digest and is included as part of the attestation report. 

 While SEV and SEV-ES only support attestation during guest launch, SEV-SNP supports more 

flexible attestation.  Attestation reports can be requested through a protected path from the AMD-SP by 

the guest VM at any time.  As part of SEV-SNP VM launch, a set of private communication keys are 

created by the AMD-SP which the guest can use to communicate directly with the AMD-SP.  The guest 

can use this path to request attestation reports, cryptographic keys, and more. 

Attestation reports contain the IDB information from launch, system information, and a block of 

arbitrary data supplied by the guest VM as part of the report request.  The attestation report is signed 

by the AMD-SP firmware using the VCEK.  Attestation reports enable a third party, such as the guest 

owner, to validate that certain data came from a certain VM.   

For example, a VM can publish a public key and ask the AMD-SP for an attestation report 

containing the hash of this public key as shown in Figure 10.  A third party can then verify that this public 

key is associated with this VM through the attestation report.  The attestation report also proves that 

 FIGURE 10: SEV-SNP ATTESTATION 
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the VM was running with the appropriate security features enabled, and that it started on an authentic 

AMD platform.  Because the attestation report is signed by the VCEK, the verification of this report 

proves both the authenticity of the platform and the TCB version used (since the VCEK is derived from 

the TCB version). Upon successful attestation, a third party such as the guest owner can then choose to 

provide the VM with secrets, such as a disk decryption key, or other keys required for operation. 

 Besides remote attestation, SEV-SNP supports additional use models for generating guest key 

material.  SEV-SNP VMs may request keys directly from the AMD-SP for various purposes such as data 

sealing.  These keys may be derived from different sources, and the VM may select which sources are 

used as needed for their use case.  For instance, local sealing keys can be requested which are specific to 

the current part at a certain TCB level and specific to the IDB signing key.  Through these controls, the 

VM may request keys that are guaranteed to not be able to be derived by a malicious actor or another 

device. 

VM Migration 
 VM migration, and specifically live VM migration, are standard features of modern cloud 

architectures.  Live VM migration allows for moving one VM to another physical system without 

interruption when needed for load balancing, host system maintenance, and other purposes.  All SEV 

technologies support VM migration, but SEV-SNP enhances the flexibility associated with migration. 

 In SEV and SEV-ES, VM migration was dictated by a guest owner supplied policy.  This policy 

indicated whether the VM was migratable, and if so to what type of systems.  The AMD-SP was 

responsible for enforcing this migration policy and did so by authenticating the AMD-SP on the 

destination machine prior to starting migration. 

 In SEV-SNP, the role of migration policy enforcement has been offloaded to a new entity called a 

Migration Agent (MA).  The MA is itself an SEV-SNP VM that runs on the same physical system as the 

primary VM.  When a VM is launched, it can optionally be associated with an already running MA.  

Information about the MA binding of a VM is present in its attestation report as the MA is part of the 

TCB of the guest.  Each VM can only be associated with a single MA, but a single MA can manage 

migration for an arbitrary number of VMs. 

 The MA is responsible for determining what systems to which the primary VM can migrate.  

While the details of the MA architecture are beyond the scope of this white paper, the MA can 

implement complex migration policies using whatever means it desires. 

 In a typical cloud scenario, the MA is not itself migratable.  Instead, a separate instance of the 

MA runs on each physical machine.  When a VM is about to migrate, the MA on the source machine 

authenticates the MA on the destination machine and establishes a protected network connection.  If 

this is successful, the MA transfers the required guest information so the guest can be reconstituted on 

the new machine. 

 It is important to note that because of the flexibility of the MA, it is not required that both the 

source and destination machines be online at the same time.  When a VM is paused, its state can be 

exported to its MA.  The MA can choose to move that state over to another MA immediately for live 
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migration, or it may choose to hold onto it or put it into long term storage.  Later, this VM can be 

reconstituted on this same machine or another one as desired by the MA. 

Side Channels 
 A lot of security research has recently focused on CPU side channel attacks, which are attacks 

that leverage the internal structures of the CPU to leak information2.  Speculative side channel attacks 

such as Spectre3 have been demonstrated leveraging standard techniques like hardware branch 

prediction to create data leakage in certain scenarios.  AMD has added hardware capabilities4 to help 

software defend itself against certain attacks, like Spectre Variant 2. 

 Spectre Variant 2 demonstrated that the indirect branch predictor (BTB) can be exploited given 

certain software circumstances, and assuming an attacker is able to influence the branch predictions of 

another entity.  In recent CPU designs, AMD has added support for the SPEC_CTRL MSR and PRED_CMD 

MSR which enables more software control of the BTB structure.  In the SEV-SNP architecture, the 

SPEC_CTRL MSR is virtualized allowing the guest to choose its own speculation policy independent of the 

hypervisor.  This allows the guest to use modes such as IBRS. 

 In traditional virtualization, the hypervisor takes steps to protect itself from guest-based attacks.  

This may include techniques like retpoline or running with IBRS set.   When the hypervisor is not trusted, 

the guest also may be concerned with hypervisor-based attacks.  For instance, a malicious hypervisor 

could attempt to poison the BTB entries the guest will use or may try to use another VM to poison the 

BTB before the SEV-SNP guest runs. 

 To protect against such attacks, SEV-SNP VMs may opt into additional protection whereby the 

CPU hardware will prevent the VM from speculatively using BTB entries installed by another entity.  This 

feature tracks when BTB entries are installed by either the hypervisor or other software and will 

automatically perform a BTB flush when required so that the SEV-SNP VM does not speculatively use 

those BTB entries.   

 Simultaneous Multi-Threading (SMT) is another area of CPU hardware that has been a focus of 

side channel research.  Due to the shared hardware resources in SMT designs, more channels of 

observation are possible.  SEV-SNP VMs that believe themselves to be particularly sensitive to such 

observation may opt into a policy which restricts them to only being run on SMT-disabled systems. 

 While SEV-SNP offers guests several options when it comes to protection from speculative side 

channel attacks and SMT, it is not able to protect against all possible side channel attacks.  For example, 

traditional side channel attacks on software such as PRIME+PROBE are not protected by SEV-SNP.  These 

types of attacks require specifically targeting software algorithms that are vulnerable to these types of 

side channels, typically because they involve code paths which vary their cache or TLB access patterns 

based on a secret value.  Modern cryptographic libraries take special care to avoid such behavior as 

 
2 For information about specific security vulnerabilities and their applicability to AMD, please see the AMD Product 
Security website at https://www.amd.com/en/corporate/product-security 
3 https://spectreattack.com/spectre.pdf 
4 https://developer.amd.com/wp-
content/resources/Architecture_Guidelines_Update_Indirect_Branch_Control.pdf 

https://www.amd.com/en/corporate/product-security
https://spectreattack.com/spectre.pdf
https://developer.amd.com/wp-content/resources/Architecture_Guidelines_Update_Indirect_Branch_Control.pdf
https://developer.amd.com/wp-content/resources/Architecture_Guidelines_Update_Indirect_Branch_Control.pdf
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these types of attacks can occur even on non-virtualized platforms.  Because SEV-SNP hardware is not 

designed to explicitly protect against such attacks, it is the responsibility of VM owners to follow 

standard security practices and ensure their libraries and software are updated to not use algorithms 

which may be vulnerable to these attacks. 

 Another category of side channel attacks which are outside the scope of SEV-SNP include 

application fingerprinting attacks, such as performance or page fault monitoring.  As mentioned earlier, 

SEV-SNP focuses primarily on protecting the data inside VMs and these types of attacks, which typically 

only attempt to determine what application is being run, do not directly break the confidentiality or 

integrity of guest VM data.  Future versions of SEV may include additional protections against some of 

these attack vectors.  

Conclusion 
 SEV-SNP represents an enhanced level of security and isolation for virtual machines running in 

untrusted hosting environments.  Building upon the SEV and SEV-ES features which provided data 

confidentiality protection against potentially buggy hypervisors, SEV-SNP adds integrity guarantees 

capable of protecting VMs from malicious hypervisors.  Besides integrity protection, SEV-SNP also 

provides new architectural flexibility in the form of multiple VMPLs, new attestation and key derivation 

architectures, and an arbitrarily flexible migration policy. 

 SEV-SNP also raises the security bar by providing optional protection against malicious interrupt 

injection, certain speculative side channel attacks, and TCB rollback attacks.  These features, like with 

previous SEV and SEV-ES features, are designed to be enabled at the guest operating system level, 

meaning that no changes to applications inside of VMs are required. 

 VM isolation is a challenging task for a modern cloud computing environment.  SEV-SNP is the 

first x86 architecture designed to support both confidentiality and integrity protection for isolated VMs, 

enabling more secure cloud computing for a variety of workloads.  AMD believes that secure cloud 

computing is a critical workload for tomorrow’s datacenter and SEV-SNP is the next step toward that 

realization. 


